Article

Uncoupling of Pyrin-only protein 2 (POP2)-mediated dual regulation of NF-κB and the inflammasome.

Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2011; 286(47):40536-47. DOI: 10.1074/jbc.M111.274290
Source: PubMed

ABSTRACT Activation of transcription factor NF-κB and inflammasome-directed caspase-1 cleavage of IL-1β are key processes in the inflammatory response to pathogen or host-derived signals. Pyrin-only proteins (POPs) are restricted to Old World monkeys, apes, and humans and have previously been shown to impair inflammasome assembly and/or NF-κB p65 transcriptional activity in transfected epithelial cells. However, the biological role of POP2 and the molecular basis for its observed functions are not well understood. In this report we demonstrate that POP2 regulates TNFα and IL-1β responses in human monocytic THP-1 cells and in stable transfectants of mouse J774A.1 macrophages. Deletion analysis of POP2 revealed that the first α-helix (residues 1-19) is necessary and sufficient for both inflammasome and NF-κB inhibitory functions. Further, key acidic residues Glu(6), Asp(8), and Glu(16), believed critical for Pyrin/Pyrin domain interaction, are important for inflammasome inhibition. Moreover, these mutations did not reduce the effect of POP2 upon NF-κB, indicating that the inflammasome and NF-κB inhibitory properties of POP2 can be uncoupled mechanistically. Collectively, these data demonstrate that POP2 acts as a regulator of inflammatory signals and exerts its two known functions through distinct modalities employed by its first α-helix.

0 Followers
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PYRIN domain (PYD) is a protein–protein interaction domain, which belongs to the death domain fold (DDF) superfamily. It is best known for its signaling function in innate immune responses and particularly in the assembly of inflammasomes, which are large protein complexes that allow the induced proximity-mediated activation of caspase-1 and subsequently the release of pro-inflammatory cytokines. The molecular mechanism of inflammasome assembly was only recently elucidated and specifically requires PYD oligomerization. Here we discuss the recent advances in our understanding of PYD signaling and its regulation by PYD-only proteins.
    APOPTOSIS 12/2014; 20(2). DOI:10.1007/s10495-014-1065-1 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammasomes are oligomeric protein complexes assembled through interactions among the death domain superfamily members, in particular the CARD and PYD domains. Recent progress has shed lights on how the ASC PYD can polymerize to form filaments using multiple domain:domain interfaces, and how the caspase4 CARD can recognize LPS to activate the non-classical inflammasome pathway. Comprehensive understanding of the molecular mechanisms of inflammasome activation and assembly require more extensive structural and biophysical dissection of the inflammasome components and complexes, in particular additional CARD or PYD filaments. Because of the variations in death domain structures and complexes observed so far, future work will undoubtedly shed lights on the mechanisms of inflammasome assembly as well as more surprises on the versatile structure and function of the death domain superfamily.
    APOPTOSIS 11/2014; 20(2). DOI:10.1007/s10495-014-1053-5 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudogenes are duplicated yet defunct copies of functional parent genes. However, some pseudogenes have gained or retained function. In this study, we consider a functional role for the NLRP2-related, higher primate-specific, processed pseudogene NLRP2P, which is closely related to Pyrin-only protein 2 (POP2/PYDC2), a regulator of nuclear factor-κB (NF-κB) and the inflammasome. The NLRP2P open-reading frame on chromosome X has features consistent with a processed pseudogene (retrotransposon), yet encodes a 45-amino-acid, Pyrin-domain-related protein. The open-reading frame of NLRP2P shares 80% identity with POP2 and is under purifying selection across Old World primates. Although widely expressed, NLRP2P messenger RNA is upregulated by lipopolysaccharide in human monocytic cells. Functionally, NLRP2P impairs NF-κB p65 transactivation by reducing activating phosphorylation of RelA/p65. Reminiscent of POP2, NLRP2P reduces production of the NF-κB-dependent cytokines tumor necrosis factor alpha and interleukin (IL)-6 following toll-like receptor stimulation. In contrast to POP2, NLRP2P fails to inhibit the ASC-dependent NLRP3 inflammasome. In addition, beyond regulating cytokine production, NLRP2P has a potential role in cell cycle regulation and cell death. Collectively, our findings suggest that NLRP2P is a resurrected processed pseudogene that regulates NF-κB RelA/p65 activity and thus represents the newest member of the POP family, POP4.Genes and Immunity advance online publication, 29 May 2014; doi:10.1038/gene.2014.30.
    Genes and Immunity 05/2014; 15(6). DOI:10.1038/gene.2014.30 · 3.79 Impact Factor

Full-text

Download
33 Downloads
Available from
May 27, 2014