Article

Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine.

Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, 6020 Katz Group Centre, Edmonton, AB T6G 2H7, Canada.
Journal of Virology (Impact Factor: 4.65). 12/2011; 85(24):13049-60. DOI: 10.1128/JVI.05779-11
Source: PubMed

ABSTRACT Smallpox was eradicated using variant forms of vaccinia virus-based vaccines. One of these was Dryvax, a calf lymph vaccine derived from the New York City Board of Health strain. We used genome-sequencing technology to examine the genetic diversity of the population of viruses present in a sample of Dryvax. These studies show that the conserved cores of these viruses exhibit a lower level of sequence variation than do the telomeres. However, even though the ends of orthopoxviruses are more genetically plastic than the cores, there are still many telomeric genes that are conserved as intact open reading frames in the 11 genomes that we, and 4 genomes that others, have sequenced. Most of these genes likely modulate inflammation. Our sequencing also detected an evolving pattern of mutation, with some genes being highly fragmented by randomly assorting mutations (e.g., M1L), while other genes are intact in most viruses but have been disrupted in individual strains (e.g., I4L in strain DPP17). Over 85% of insertion and deletion mutations are associated with repeats, and a rare new isolate bearing a large deletion in the right telomere was identified. All of these strains cluster in dendrograms consistent with their origin but which also surprisingly incorporate horsepox virus. However, these viruses also exhibit a "patchy" pattern of polymorphic sites characteristic of recombinants. There is more genetic diversity detected within a vial of Dryvax than between variola virus major and minor strains, and our study highlights how propagation methods affect the genetics of orthopoxvirus populations.

0 Followers
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment.
    Viruses 01/2015; 7(3):1218-37. DOI:10.3390/v7031218 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poxviruses are composed of large dsDNA genomes coding for several hundred genes whose variation has supported virus adaptation to a wide variety of hosts over their long evolutionary history. Comparative genomics has suggested that the Orthopoxvirus genus in particular has undergone reductive evolution, with the most recent common ancestor likely possessing a gene complement consisting of all genes present in any existing modern-day orthopoxvirus species, similar to the current Cowpox virus species. As orthopoxviruses adapt to new environments, the selection pressure on individual genes may be altered, driving sequence divergence and possible loss of function. This is evidenced by accumulation of mutations and loss of protein-coding open reading frames (ORFs) that progress from individual missense mutations, to gene truncation through the introduction of early stop mutations (ESMs), gene fragmentation, and in some cases, a total loss of the ORF. In this study, we have constructed a whole-genome alignment for representative isolates from each Orthopoxvirus species and used it to identify the nucleotide-level changes that have led to gene content variation. By identifying the changes that have led to ESMs, we were able to determine that short indels were the major cause of gene truncations, and that the genome length is proportional to the number of ESMs present. We also identified the number and types of protein functional motifs still present in truncated genes to assess their functional significance.
    Journal of Virology 09/2014; 88(23). DOI:10.1128/JVI.02015-14 · 4.65 Impact Factor
  • Viruses 04/2015; 7(4):1726-1803. DOI:10.3390/v7041726 · 3.28 Impact Factor