GABAergic precursor transplantation into the prefrontal cortex prevents phencyclidine-induced cognitive deficits.

Department of Anatomy, Keio University School of Medicine, Shinjuku-ku Tokyo 160-8582, Japan.
Journal of Neuroscience (Impact Factor: 6.91). 10/2011; 31(40):14116-25. DOI: 10.1523/JNEUROSCI.2786-11.2011
Source: PubMed

ABSTRACT Phencyclidine (PCP) is a noncompetitive NMDA receptor antagonist, and it induces schizophreniform cognitive deficits in healthy humans and similar cognitive deficits in rodents. Although the PCP-induced cognitive deficits appear to be accompanied and possibly caused by dysfunction of GABAergic inhibitory interneurons in the prefrontal cortex (PFC), the potential benefit(s) of GABAergic interneuron manipulations on PCP-induced cognitive deficits remains unexplored. In this study we show that when embryonic medial ganglionic eminence (MGE) cells, many of which differentiate into cortical GABAergic interneurons in situ, were grafted into the medial PFC (mPFC) of neonatal mice, they differentiated into a specific class of GABAergic interneurons and became functionally integrated into the host neuronal circuitry in adults. Prior MGE cell transplantation into the mPFC significantly prevented the induction of cognitive and sensory-motor gating deficits by PCP. The preventive effects were not reproduced by either transplantation of cortical projection neuron precursors into the mPFC or transplantation of MGE cells into the occipital cortex. The preventive effects of MGE cell transplantation into the mPFC were accompanied by activation of callosal projection neurons in the mPFC. These findings suggest that increasing GABAergic interneuron precursors in the PFC may contribute to the development of a cell-based approach as a novel means of modulating the PFC neuronal circuitry and preventing schizophreniform cognitive deficits.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Advances in stem cell technology have engendered keen interest in cell-based therapies for neurological disorders. Postnatal engraftments of most neuronal precursors result in little cellular migration, a crucial prerequisite for transplants to integrate within the host circuitry. This may occur because most neurons migrate along substrates, such as radial glial processes, that are not abundant in adults. However, cortical GABAergic interneurons migrate tangentially from the subcortical forebrain into the cerebral cortex. Accordingly, transplants of cortical interneuron precursors migrate extensively after engraftment into a variety of CNS tissues, where they can become synaptically connected with host circuitry. We review how this remarkable ability to integrate post-transplant is being applied to the development of cell-based therapies for a variety of CNS disorders.
    Trends in Neurosciences 02/2014; · 13.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell therapy is well proposed as a potential method for the improvement of neurodegenerative damage in the brain. Among several different procedures to reach the cells into the injured lesion, the intravenous (IV) injection has benefit as a minimally invasive approach. However, for the brain disease, prompt development of the effective treatment way of cellular biodistribution of stem cells into the brain after IV injection is needed. Atelocollagen has been used as an adjunctive material in a gene, drug and cell delivery system because of its extremely low antigenicity and bioabsorbability to protect these transplants from intrabody environment. However, there is little work about the direct effect of atelocollagen on stem cells, we examined the functional change of survival, proliferation, migration and differentiation of cultured neural stem cells (NSCs) induced by atelocollagen in vitro. By 72-h treatment 0.01-0.05 % atelocollagen showed no significant effects on survival, proliferation and migration of NSCs, while 0.03-0.05 % atelocollagen induced significant reduction of neuronal differentiation and increase of astrocytic differentiation. Furthermore, IV treated NSCs complexed with atelocollagen (0.02 %) could effectively migrate into the brain rather than NSC treated alone using chronic alcohol binge model rat. These experiments suggested that high dose of atelocollagen exerts direct influence on NSC function but under 0.03 % of atelocollagen induces beneficial effect on regenerative approach of IV administration of NSCs for CNS disease.
    Journal of Neural Transmission 04/2013; · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia patients exhibit increased hippocampal activity that is correlated with positive symptoms. Although the cause of this hippocampal hyperactivity has not been demonstrated, it likely involves a decrease in GABAergic signaling. Thus, we posit that restoring GABAergic function may provide a novel therapeutic approach for the treatment of schizophrenia. It has been demonstrated that transplanted GABAergic precursor cells from the medial ganglionic eminence (MGE) can migrate and differentiate into mature interneurons. Here, we demonstrate that ventral hippocampal MGE transplants can restore hippocampal function and normalize downstream dopamine neuron activity in a rodent model of schizophrenia. Furthermore, MGE transplants also reverse the hyper-responsive locomotor response to amphetamine. Taken together, these data demonstrate that restoring interneuron function reverses neurophysiological and behavioral deficits in a rodent model of schizophrenia and moreover, demonstrate the feasibility of a neuronal transplant procedure as a potential novel therapeutic approach for the treatment of schizophrenia.Molecular Psychiatry advance online publication, 27 August 2013; doi:10.1038/mp.2013.111.
    Molecular Psychiatry 08/2013; · 15.15 Impact Factor