Opposite effects of amphetamine on impulsive action with fixed and variable delays to respond.

Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.83). 02/2012; 37(3):651-9. DOI: 10.1038/npp.2011.236
Source: PubMed

ABSTRACT Impulsive action, the failure to withhold an inappropriate response, is treated clinically with dopamine agonists such as amphetamine. Despite the therapeutic efficacy, these drugs have inconsistent effects on impulsive action in rodents, causing improvements or disruptions in different tasks. Thus, we hypothesized that amphetamine is producing an effect by altering distinct cognitive processes in each task. To test this idea, we used the response inhibition (RI) task and trained rats to withhold responding for sucrose until a signal is presented. We then varied the duration that subjects were required to inhibit responding (short=4 s; long=60 s; or variable=1-60 s) and examined whether this influenced the pattern of premature responses. We also tested the effects of amphetamine (0.0, 0.125, 0.25, 0.5, and 1.0 mg/kg) on each task variant. The probability of premature responding varied across the premature interval with a unique pattern of time-dependent errors emerging in each condition. Amphetamine also had distinct effects on each version: the drug promoted premature responding when subjects expected a consistent delay, regardless of its duration, but reduced premature responding when the delay was unpredictable. We propose that the ability to inhibit a motor response is controlled by a different combination of cognitive processes in the three task conditions. These include timing, conditioned avoidance, and attention, which then interact with amphetamine to increase or decrease impulsive action. The effect of amphetamine on impulsive action, therefore, is not universal, but depends on the subject's experience and expectation of the task demands.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of our study was to characterize the relationship between intertemporal choice and interval timing, including determining how drugs that modulate brain serotonin and dopamine levels influence these two processes. In Experiment 1, rats were tested on a standard 40-s peak-interval procedure following administration of fluoxetine (3, 5, or 8mg/kg) or vehicle to assess basic effects on interval timing. In Experiment 2, rats were tested in a novel behavioral paradigm intended to simultaneously examine interval timing and impulsivity. Rats performed a variant of the bi-peak procedure using 10-s and 40-s target durations with an additional "defection" lever that provided the possibility of a small, immediate reward. Timing functions remained relatively intact, and 'patience' across subjects correlated with peak times, indicating a negative relationship between 'patience' and clock speed. We next examined the effects of fluoxetine (5mg/kg), cocaine (15mg/kg), or methamphetamine (1mg/kg) on task performance. Fluoxetine reduced impulsivity as measured by defection time without corresponding changes in clock speed. In contrast, cocaine and methamphetamine both increased impulsivity and clock speed. Thus, variations in timing may mediate intertemporal choice via dopaminergic inputs. However, a separate, serotonergic system can affect intertemporal choice without affecting interval timing directly. This article is part of a Special Issue entitled: Associative and Temporal Learning.
    Behavioural processes 10/2014; 101:123-134. DOI:10.1016/j.beproc.2013.09.013 · 1.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects.
    ACS Chemical Neuroscience 01/2013; 4(1):33-42. DOI:10.1021/cn300138m · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Impulsive action is mediated through several neurochemical systems, although it is not clear which role each of these plays in the inability to withhold inappropriate responses. Manipulations of the opioid system alter impulsive action in rodents, although the effects are not consistent across tasks. Previously, we speculated that these discrepancies reflect differences in the cognitive mechanisms that control responding in each task. We investigated whether the effect of morphine, a mu opioid receptor (MOR) agonist, on impulsive action depends on the ability of the subjects to time the interval during which they must inhibit a response. Male Long-Evans rats were trained in a response inhibition (RI) task to withhold responding for sucrose during a 4- or 60-s delay; impulsive action was assessed as increased responding during the delay. The rats were tested following an injection of morphine (0, 1, 3, 6 mg/kg). In a subsequent experiment, the effects of morphine (6 mg/kg) plus the MOR antagonist naloxone (0, 0.3, 1, 3 mg/kg) were investigated. Morphine increased impulsive action, but had different effects in the two conditions: the drug increased the proportion of premature responses as the 4-s interval progressed and produced a general increase in responding across the 60-s interval. Naloxone blocked all morphine-induced effects. The finding that morphine increases impulsive action in a fixed-delay RI task contrasts with our previous evidence which shows no effect in the same task with a variable delay. Thus, MORs disrupt impulsive action only when rats can predict the delay to respond.
    Psychopharmacology 07/2013; 230(4). DOI:10.1007/s00213-013-3190-x · 3.99 Impact Factor


Available from