Desorption Electrospray Ionization then MALDI Mass Spectrometry Imaging of Lipid and Protein Distributions in Single Tissue Sections

Analytical Chemistry (Impact Factor: 5.83). 11/2011; 83(22):8366-71. DOI: 10.1021/ac202016x
Source: PubMed

ABSTRACT Imaging mass spectrometry (MS) is a powerful technique for mapping the spatial distributions of a wide range of chemical compounds simultaneously from a tissue section. Co-localization of the distribution of individual molecular species, including particular lipids and proteins, and correlation with the morphological features of a single tissue section are highly desirable for comprehensive tissue analysis and disease diagnosis. We now report on the use, in turn, of desorption electrospray ionization (DESI), matrix assisted laser desorption ionization (MALDI), and then optical microscopy to image lipid and protein distributions in a single tissue section. This is possible through the use of histologically compatible DESI solvent systems, which allow for sequential analyses of the same section by DESI then MALDI. Hematoxylin and eosin (H&E) staining was performed on the same section after removal of the MALDI matrix. This workflow allowed chemical information to be unambiguously matched to histological features in mouse brain tissue sections. The lipid sulfatide (24:1), detected at m/z 888.8 by DESI imaging, was colocalized with the protein MBP isoform 8, detected at m/z 14117 by MALDI imaging, in regions corresponding to the corpus callosum substructure of the mouse brain, as confirmed in the H&E images. Correlation of lipid and protein distributions with histopathological features was also achieved for human brain cancer samples. Higher tumor cell density was observed in regions demonstrating higher relative abundances of oleic acid, detected by DESI imaging at m/z 281.4, and the protein calcyclin, detected by MALDI at m/z 10085, for a human glioma sample. Since correlation between molecular signatures and disease state can be achieved, we expect that this methodology will significantly enhance the value of MS imaging in molecular pathology for diagnosis.


Available from: Sandro Santagata, Oct 12, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed new procedures for internal standardization and calibration to be used for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for elemental micro mapping imaging of biological samples like Western blot membranes and tissue sections. These procedures are based on printing of metal spiked inks onto the top of thin layer samples for simultaneous internal standardization and calibration of LA-ICP-MS. In the case of internal standardization the ink is spiked with indium as an internal standard and homogenously printed over the entire membrane (size 56 cm2) prior to LA-ICP-MS detection, a standard deviation (RSD) value of 2% was achieved. In the second approach the metal content of lanthanide tagged proteins and antibodies after biological work flows was quantified by LA-ICP-MS on nitro-cellulose membranes. In this case the inks spiked with varying metals were printed with different densities on the same nitrocellulose membranes in well-defined squares to produce matrix-matched calibration standards. For validation and calibration the ink squares were excised and the specific metal content was measured by liquid ICP-MS after solubilization of the membrane slice. For the printed calibration standard limits of detection (LOD) of <4 fmol for different metals and relative process standard deviations of 1-2% only were determined via LA-ICP-MS.
    Journal of Analytical Atomic Spectrometry 01/2014; 29(7):1282. DOI:10.1039/c4ja00060a · 3.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)-an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ∼150 μm in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine-metabolites associated with cell growth-are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.
    Analytical and Bioanalytical Chemistry 11/2014; 407(8). DOI:10.1007/s00216-014-8174-0 · 3.58 Impact Factor
  • Source