Article

Desorption Electrospray Ionization then MALDI Mass Spectrometry Imaging of Lipid and Protein Distributions in Single Tissue Sections

Analytical Chemistry (Impact Factor: 5.83). 11/2011; 83(22):8366-71. DOI: 10.1021/ac202016x
Source: PubMed

ABSTRACT Imaging mass spectrometry (MS) is a powerful technique for mapping the spatial distributions of a wide range of chemical compounds simultaneously from a tissue section. Co-localization of the distribution of individual molecular species, including particular lipids and proteins, and correlation with the morphological features of a single tissue section are highly desirable for comprehensive tissue analysis and disease diagnosis. We now report on the use, in turn, of desorption electrospray ionization (DESI), matrix assisted laser desorption ionization (MALDI), and then optical microscopy to image lipid and protein distributions in a single tissue section. This is possible through the use of histologically compatible DESI solvent systems, which allow for sequential analyses of the same section by DESI then MALDI. Hematoxylin and eosin (H&E) staining was performed on the same section after removal of the MALDI matrix. This workflow allowed chemical information to be unambiguously matched to histological features in mouse brain tissue sections. The lipid sulfatide (24:1), detected at m/z 888.8 by DESI imaging, was colocalized with the protein MBP isoform 8, detected at m/z 14117 by MALDI imaging, in regions corresponding to the corpus callosum substructure of the mouse brain, as confirmed in the H&E images. Correlation of lipid and protein distributions with histopathological features was also achieved for human brain cancer samples. Higher tumor cell density was observed in regions demonstrating higher relative abundances of oleic acid, detected by DESI imaging at m/z 281.4, and the protein calcyclin, detected by MALDI at m/z 10085, for a human glioma sample. Since correlation between molecular signatures and disease state can be achieved, we expect that this methodology will significantly enhance the value of MS imaging in molecular pathology for diagnosis.

Full-text

Available from: Sandro Santagata, Oct 12, 2014
0 Followers
 · 
270 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The on-demand printing of living cells using inkjet technologies has recently been demonstrated and allows for controlled deposition of cells in microarrays. Here we show that such arrays can be interrogated directly by robot-controlled liquid microextraction coupled with chip-based nano-electospray mass spectrometry. Such automated analyses generate a profile of abundant membrane lipids that are characteristic of cell type. Significantly, the spatial control in both deposition and extraction steps combined with the sensitivity of the mass spectrometric detection allows for robust molecular profiling of individual cells.
    Analytical Chemistry 11/2012; 84(22). DOI:10.1021/ac302634u · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa and Staphylococcus aureus are ubiquitous pathogens often found together in polymicrobial, biofilm-associated infections. This study is the first to use laser ablation electrospray ionization mass spectrometry (LAESI-MS) to rapidly study bacteria within a mixed biofilm. Fast, direct, non-invasive LAESI-MS analysis of biofilm could significantly accelerate biofilm studies and provide previously unavailable information on both biofilm composition and the effects of antibiofilm treatment. LAESI-MS was applied directly to a polymicrobial biofilm and analyzed with respect to whether P. aeruginosa and S. aureus were co-localized or self-segregated within the mixed biofilm. LAESI-MS was also used to analyze ions following LL-37 antimicrobial peptide treatment of the biofilm. This ambient ionization method holds promise for future biofilm studies. The use of this innovative technique has profound implications for the study of biofilms, as LAESI-MS eliminates the need for lengthy and disruptive sample preparation while permitting rapid analysis of unfixed and wet biofilms.
    Biofouling 02/2015; 31(2):151-61. DOI:10.1080/08927014.2015.1011067 · 3.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed new procedures for internal standardization and calibration to be used for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for elemental micro mapping imaging of biological samples like Western blot membranes and tissue sections. These procedures are based on printing of metal spiked inks onto the top of thin layer samples for simultaneous internal standardization and calibration of LA-ICP-MS. In the case of internal standardization the ink is spiked with indium as an internal standard and homogenously printed over the entire membrane (size 56 cm2) prior to LA-ICP-MS detection, a standard deviation (RSD) value of 2% was achieved. In the second approach the metal content of lanthanide tagged proteins and antibodies after biological work flows was quantified by LA-ICP-MS on nitro-cellulose membranes. In this case the inks spiked with varying metals were printed with different densities on the same nitrocellulose membranes in well-defined squares to produce matrix-matched calibration standards. For validation and calibration the ink squares were excised and the specific metal content was measured by liquid ICP-MS after solubilization of the membrane slice. For the printed calibration standard limits of detection (LOD) of <4 fmol for different metals and relative process standard deviations of 1-2% only were determined via LA-ICP-MS.
    Journal of Analytical Atomic Spectrometry 01/2014; 29(7):1282. DOI:10.1039/c4ja00060a · 3.40 Impact Factor