Activating mutation in MET oncogene in familial colorectal cancer

Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
BMC Cancer (Impact Factor: 3.32). 10/2011; 11:424. DOI: 10.1186/1471-2407-11-424
Source: PubMed

ABSTRACT In developed countries, the lifetime risk of developing colorectal cancer (CRC) is 5%, and it is the second leading cause of death from cancer. The presence of family history is a well established risk factor with 25-35% of CRCs attributable to inherited and/or familial factors. The highly penetrant inherited colon cancer syndromes account for approximately 5%, leaving greater than 20% without clear genetic definition. Familial colorectal cancer has been linked to chromosome 7q31 by multiple affected relative pair studies. The MET proto-oncogene which resides in this chromosomal region is considered a candidate for genetic susceptibility.
MET exons were amplified by PCR from germline DNA of 148 affected sibling pairs with colorectal cancer. Amplicons with altered sequence were detected with high-resolution melt-curve analysis using a LightScanner (Idaho Technologies). Samples demonstrating alternative melt curves were sequenced. A TaqMan assay for the specific c.2975C >T change was used to confirm this mutation in a cohort of 299 colorectal cancer cases and to look for allelic amplification in tumors.
Here we report a germline non-synonymous change in the MET proto-oncogene at amino acid position T992I (also reported as MET p.T1010I) in 5.2% of a cohort of sibling pairs affected with CRC. This genetic variant was then confirmed in a second cohort of individuals diagnosed with CRC and having a first degree relative with CRC at prevalence of 4.1%. This mutation has been reported in cancer cells of multiple origins, including 2.5% of colon cancers, and in <1% in the general population. The threonine at amino acid position 992 lies in the tyrosine kinase domain of MET and a change to isoleucine at this position has been shown to promote metastatic behavior in cell-based models. The average age of CRC diagnosis in patients in this study is 63 years in mutation carriers, which is 8 years earlier than the general population average for CRC.
Although the MET p.T992I genetic mutation is commonly found in somatic colorectal cancer tissues, this is the first report also implicating this MET genetic mutation as a germline inherited risk factor for familial colorectal cancer. Future studies on the cancer risks associated with this mutation and the prevalence in different at-risk populations will be an important extension of this work to define the clinical significance.

1 Follower
  • Journal of Clinical Pathology 09/2014; 67(11). DOI:10.1136/jclinpath-2014-202563 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A 28-month female with a clinical diagnosis of neurocutaneous melanosis and numerous intracranial abnormalities (including a right choroid plexus tumor and left hemimegalencephaly) presented with a rapidly expanding tumor in the left occipital cerebrum. Microscopic examination of the resected specimen revealed a myxoid mesenchymal neoplasm consisting of fusiform cells that were immunoreactive for vimentin, CD34, and P53 but no melanocyte markers. Focused amplicon deep sequencing on DNA extracted from the brain tumor and a cutaneous nevus revealed a heterozygous (c.37G¿>¿C; p.G13R) substitution in the NRAS gene. DNA sequencing of ¿normal¿ skin and buccal swab showed the identical NRAS change albeit at lower allelic frequency. Her parents did not harbor the NRAS mutation. The skin lesion, but not the brain tumor, had a BRAF mutation (c.1397G¿>¿T; p.G466V). A germline single nucleotide polymorphism in MET was found in the child and her father (c.3209C¿>¿T; p.T1010I). The findings suggest NRAS mosaicism that occurred sometime after conception and imply an oncogenic role of the activating NRAS mutation in both the brain and skin lesions in this child.
    10/2014; 2(1):140. DOI:10.1186/PREACCEPT-1057694632138125
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clear cell tubulopapillary renal cell carcinoma (CCPRCC) is a recently described rare renal malignancy that displays characteristic gross, microscopic and immunohistochemical differences from other renal tumour types. However, CCPRCC remains a very poorly understood entity. We therefore sought to elucidate some of the molecular mechanisms involved in this neoplasm by carrying out targeted next generation sequencing (NGS) to identify associated mutations, and in addition examined the expression of non-coding (nc)RNAs. We identified multiple somatic mutations in CCPRCC cases including a recurrent (3 of 14 cases (21%)) non-synonymous T992I mutation in the MET proto-oncogene, a gene associated with epithelial-to-mesenchymal transition (EMT). Using a microarray approach we found that the expression of mature (n = 1105) and pre-miRNAs (n = 1105), as well as snoRNA and scaRNAs (n = 2214) in CCPRCC cases differed from that of clear cell renal cell carcinoma (CCRCC) or papillary renal cell carcinoma (PRCC) tumours. Surprisingly, and unlike other renal tumour subtypes, we found that all five members of the miR-200 family were over-expressed in CCPRCC cases. As these miRNAs are intimately involved with EMT, we stained CCPRCC cases for E-cadherin, vimentin and β-catenin and found tumour cells of all cases were positive for all three markers, a combination rarely reported in other renal tumours that could have diagnostic implications. Taken together with the mutational analysis, these data suggest that EMT in CCPRCC tumour cells is incomplete or blocked, consistent with the indolent clinical course typical of this malignancy. In summary, as well as describing a novel pathological mechanism in renal carcinomas, this work adds to the mounting evidence that CCPRCC should be formally considered a distinct entity.
    The Journal of Pathology 01/2014; 232(1). DOI:10.1002/path.4296 · 7.33 Impact Factor

Full-text (4 Sources)

Available from
May 20, 2014