Article

CTCF, cohesin, and histone variants: connecting the genome.

Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
Biochemistry and Cell Biology (Impact Factor: 2.92). 10/2011; 89(5):505-13. DOI: 10.1139/o11-052
Source: PubMed

ABSTRACT During the last decades our view of the genome organization has changed. We moved from a linear view to a looped view of the genome. It is now well established that inter- and intra-connections occur between chromosomes and play a major role in gene regulations. These interconnections are mainly orchestrated by the CTCF protein, which is also known as the "master weaver" of the genome. Recent advances in sequencing and genome-wide studies revealed that CTCF binds to DNA at thousands of sites within the human genome, providing the possibility to form thousands of genomic connection hubs. Strikingly, two histone variants, namely H2A.Z and H3.3, strongly co-localize at CTCF binding sites. In this article, we will review the recent advances in CTCF biology and discuss the role of histone variants H2A.Z and H3.3 at CTCF binding sites.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heterochromatin displays repressive histone marks that down-regulate transcription. In the absence of specialized barriers, these repressive marks spread onto nearby nucleosomes and induce transcriptional silencing of these regions. Accordingly, in various species, transgenes that are experimentally inserted directly next to telomeric repeats are silenced. Transcriptional repression induced by the spreading of telomeric heterochromatin is known as the "telomere position effect". Although it is attenuated by the presence of natural subtelomeric barriers acting against the spreading of telomeric heterochromatin, telomere-induced silencing is also observed at the level of endogenous loci where it was initially proposed to provide a mean to regulate gene expression during senescence. This, however, remains to be formally demonstrated. Here, I review the current evidences for a telomere position effect, from yeast to human.
    Medecine sciences: M/S 02/2014; 30(2):173-8. · 0.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centromeres are essential for ensuring proper chromosome segregation in eukaryotes. Their definition relies on the presence of a centromere-specific H3 histone variant CenH3, known as CENP-A in mammals. Its overexpression in aggressive cancers raises questions concerning its effect on chromatin dynamics and contribution to tumorigenesis. We find that CenH3 overexpression in human cells leads to ectopic enrichment at sites of active histone turnover involving a heterotypic tetramer containing CenH3-H4 with H3.3-H4. Ectopic localization of this particle depends on the H3.3 chaperone DAXX rather than the dedicated CenH3 chaperone HJURP. This aberrant nucleosome occludes CTCF binding and has a minor effect on gene expression. Cells overexpressing CenH3 are more tolerant of DNA damage. Both the survival advantage and CTCF occlusion in these cells are dependent on DAXX. Our findings illustrate how changes in histone variant levels can disrupt chromatin dynamics and suggests a possible mechanism for cell resistance to anticancer treatments.
    Molecular cell 02/2014; · 14.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulators functionally separate active chromatin domains from inactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.3. In order to determine whether demethylation of H3K27me3 and H3.3 incorporation are a requirement for CTCF binding at domain boundaries or whether CTCF causes these changes, we made use of the LacI DNA binding domain to control CTCF binding by the Lac inducer IPTG. Here we show that, in contrast to the related factor CTCFL, the N-terminus plus zinc finger domain of CTCF is sufficient to open compact chromatin rapidly. This is preceded by incorporation of the histone variant H3.3, which thereby removes the H3K27me3 mark. This demonstrates the causal role for CTCF in generating the chromatin features found at insulators. Thereby, spreading of a histone modification from one domain through the insulator into the neighbouring domain is inhibited.
    Nucleic Acids Research 10/2014; · 8.81 Impact Factor

Full-text

Download
6 Downloads
Available from
Jun 23, 2014