Article

A study to improve the image quality in low-dose computed tomography (SPECT) using filtration.

Department of Nuclear Medicine, SGPGIMS, Lucknow, India.
Indian Journal of Nuclear Medicine 01/2011; 26(1):14-21. DOI: 10.4103/0972-3919.84595
Source: PubMed

ABSTRACT The output of the X-ray tube used in computed tomography (CT) provides a spectrum of photon energies. Low-energy photons are preferentially absorbed in tissue; the beam spectrum shifts toward the higher energy end as it passes through more tissue, thereby changing its effective attenuation coefficient and producing a variety of artifacts (beam-hardening effects) in images. Filtering of the beam may be used to remove low-energy photon component. The accuracy of attenuation coefficient calculation by bilinear model depends highly upon accuracy of Hounsfield units. Therefore, we have made an attempt to minimize the beam-hardening effects using additional copper filter in the X-ray beam. The quantitative evaluation were made to see the effect of additional filters on resulting CT images.
This study was performed on dual-head SPECT (HAWKEYE 4, GE Healthcare) with low-dose CT which acquires images at peak voltages of 120/140 kV and a tube current of 2.5 mA. For the evaluation of image quality, we used CT QA Phantom (PHILIPS) having six different density pins of Water, Polyethylene, Nylon (Aculon), Lexan, Acrylic (Perspex) and Teflon. The axial images were acquired using copper filters of various thicknesses ranging from 1 to 5 mm in steps of 1 mm. The copper filter was designed in such a manner that it fits exactly on the collimator cover of CT X-ray tube. Appropriate fixation of the copper filter was ensured before starting the image acquisition. As our intention was only to see the effect of beam hardening on the attenuation map, no SPECT study was performed. First set of images was acquired without putting any filter into the beam. Then, successively, filters of different thicknesses were placed into the beam and calibration of the CT scanner was performed before acquiring the images. The X-ray tube parameters were kept the same as that of unfiltered X-ray beam. All the acquired image sets were displayed using Xeleris 2 (GE Healthcare) on a high-resolution monitor. Moreover, Jaszak's SPECT Phantom after removing the spheres was used to see the different contrast intensities by inserting the different contrast materials of iodine and bismuth in water as background media. Images were analyzed for visibility, spatial resolution and contrast.
Successive improvement in the image quality was noticed when we increased the filter thickness from 1 to 3 mm. The images acquired with 3-mm filter appeared almost with no artifacts and were visibly sharper. Lower energy photons from X-ray beam cause a number of artifacts, especially at bone-tissue interfaces. Additional filtrations removed lower energy photons and improved the image quality. Degradation in the image quality was noticed when we increased the filter thickness further to 4 and 5 mm. This degradation in image quality happened due to reduced photon flux of the resulting X-ray beam, causing high statistical noise. The spatial resolution for image matrix of 512 × 512 was found to be 1.29, 1.07, 0.64 and 0.54 mm for without filter, with 1, 2 and 3 mm filters, respectively. The image quality was further analyzed for signal-to-noise ratio (SNR). It was found to be 1.72, 1.78, 1.98 and 1.99 for open, with 1, 2 and 3 mm filters respectively. This shows that 3-mm filter results in an improvement of 15.7% in SNR.
On the basis of this study, we could conclude that use of 3-mm copper filter in the X-ray beam is optimal for removing the artifacts without causing any significant reduction in the photon flux of the resulting X-ray beam. We also propose that as artifacts have been removed from the images, the value of Hounsfield units will be more accurate and hence the value of attenuation coefficients lead to better contrast and visualization of SPECT images.

0 Bookmarks
 · 
83 Views
  • Source
    Iranian Journal of Nuclear Medicine 01/2013; 21(1):19-25.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cone beam computed tomography (CBCT) has often been used to determine the quality of craniofacial bone structures through the determination of mineral density, which is based on gray scales of the images obtained. However, there is no consensus regarding the accuracy of the determination of the gray scales in these exams. This study aims to provide a literature review concerning the reliability of CBCT to determine bone mineral density. The gray values obtained with CBCT show a linear relationship with the attenuation coefficients of the materials, Hounsfield Units values obtained with medical computed tomography, and density values from dual energy X-ray absorciometry. However, errors are expected when CBCT images are used to define the quality of the scanned structures because these images show inconsistencies and arbitrariness in the gray values, particularly when related to abrupt change in the density of the object, X-ray beam hardening effect, scattered radiation, projection data discontinuity-related effect, differences between CBCT devices, changes in the volume of the field of view (FOV), and changes in the relationships of size and position between the FOV and the object evaluated. A few methods of mathematical correction of the gray scales in CBCT have been proposed; however, they do not generate consistent values that are independent of the devices and their configurations or of the scanned objects. Thus, CBCT should not be considered the examination of choice for the determination of bone and soft tissue mineral density at the current stage, particularly when values obtained are to be compared to predetermined standard values. Comparisons between symmetrically positioned structures inside the FOV and in relation to the exomass of the object, as it occurs with the right and left sides of the skull, seem to be viable because the effects on the gray scale in the regions of interest are the same.
    World journal of radiology. 08/2014; 6(8):607-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective(s): In SPECT, the sinogram contains scatter and lack of attenuated counts that degrade the reconstructed image quality and quantity. Many techniques for attenuation and scatter correction have been proposed. An acceptable method of correction is to incorporate effects into an iterative statistical reconstruction. Here, we propose new Maximum Likelihood Expectation Maximization (MLEM) formula to correct scattering and attenuating photons during reconstruction. Materials and Methods: In this work, scatters are estimated through Klein-Nishina formula in all iterations and CT images are used for accurate attenuation correction. Reconstructed images resulted from different MLEM reconstruction formula have been compared considering profile agreement, contrast, mean square error, signal-to-noise ratio, contrast-to-noise ratio and computational time. Results: The proposed formula has a good profile agreement, increased contrast, signal-to-noise (SNR) & contrast-to-noise ratio (CNR), computational time and decreased mean square error (MSE) compared with uncorrected images and/or images from conventional formula. Conclusion: In conclusion, by applying the proposed formula we were able to correct attenuation and scatter via MLEM and improve the image quality, which is a necessary step for both qualitative and quantitative SPECT images.
    Iranian Journal of Basic Medical Science 11/2013; 16(11):1181-9. · 0.24 Impact Factor