Molecular hijacking of siroheme for the synthesis of heme and d1 heme.

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2011; 108(45):18260-5. DOI: 10.1073/pnas.1108228108
Source: PubMed

ABSTRACT Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B(12), coenzyme F(430), and heme d(1) underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d(1) heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d(1) heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some bacteria and archaea synthesise haem by an alternative pathway, which involves the sequestration of sirohaem as a metabolic intermediate rather than as a prosthetic group. Along this pathway the two acetic acid side chains attached to C12 and C18 are decarboxylated by sirohaem decarboxylase, a heterodimeric enzyme composed of AhbA and AhbB, to give didecarboxysirohaem. Further modifications catalysed by two related radical SAM enzymes, AhbC and AhbD, transform didecarboxysirohaem into Fe-coproporphyrin III and haem, respectively. The detailed characterisation of sirohaem decarboxylase is reported in molecular detail. Recombinant versions of Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Methanosarcina barkeri AhbA/B have been produced and their physical properties compared. The D. vulgaris and M. barkeri enzyme complexes both copurify with haem, whose redox state influences the activity of the latter. The kinetic parameters of the D. desulfuricans enzyme have been determined, the enzyme crystallised and it structure has been elucidated. The topology of the enzyme reveals that it shares a structural similitude to the AsnC/Lrp family of transcription factors. The active site is formed in the cavity between the two subunits and a AhbA/B-product complex with didecarboxysirohaem has been obtained. A mechanism for the decarboxylation of the kinetically stable carboxyl groups is proposed.
    Molecular Microbiology 05/2014; · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, six candidate genera of anaerobic ammonium-oxidizing (anammox) bacteria have been identified, and numerous studies have been conducted to understand their ecophysiology. In this study, we examined the physiological characteristics of an anammox bacterium in the genus “Candidatus Jettenia”. Planctomycete KSU-1 was found to be a mesophilic (20–42.5°C) and neutrophilic (pH 6.5–8.5) bacterium with a maximum growth rate of 0.0020 h-1. Planctomycete KSU-1 cells showed typical physiological and structural features of anammox bacteria; i.e., 29N2 gas production by coupling of 15NH4+ and 14NO2-, accumulation of hydrazine with the consumption of hydroxylamine, and the presence of anammoxosome. In addition, the cells were capable of respiratory ammonification with oxidation of acetate. Notably, the cells contained menaquinone-7 as a dominant respiratory quinone. Proteomic analysis was performed to examine underlying core metabolisms, and high expressions of hydrazine synthase, hydrazine dehydrogenase, hydroxylamine dehydrogenase, nitrite/nitrate oxidoreductase, and CO dehydrogenase/acetyl-CoA synthase were detected. These proteins require iron or copper as a metal cofactor, and both were dominant in planctomycete KSU-1 cells. On the basis of these experimental results, we proposed the name “Ca. Jettenia caeni” sp. nov. for the bacterial clade of the planctomycete KSU-1.
    Environmental Microbiology 10/2014; · 6.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The isobacteriochlorin heme d1 serves as an essential cofactor in the cytochrome cd1 nitrite reductase NirS which plays an important role for denitrification. During the biosynthesis of heme d1 the enzyme siroheme decarboxylase catalyzes the conversion of siroheme to 12,18-didecarboxysiroheme. This enzyme was discovered recently (Bali et al. (2011) Proc. Natl. Acad. Sci. USA 108, 18260-5) and is only scarcely characterized. Here, we present the crystal structure of the siroheme decarboxylase from Hydrogenobacter thermophilus representing the first three-dimensional structure for this type of enzyme. The overall structure strikingly resembles those of transcriptional regulators of the Lrp/AsnC-family. Moreover, the structure of the enzyme in complex with a substrate analog reveals first insights into its active site architecture. Through site-directed mutagenesis and subsequent biochemical characterization of the enzyme variants two conserved histidine residues within the active site are identified to be involved in substrate binding and catalysis. Based on our results we propose a potential catalytic mechanism for the enzymatic reaction catalyzed by the siroheme decarboxylase.
    Journal of Molecular Biology 07/2014; · 3.96 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014