A potential human hepatocellular carcinoma inhibitor from Bauhinia purpurea L. seeds: from purification to mechanism exploration

School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Choh Ming Li Basic Medicinal Sciences Building, Shatin, Hong Kong.
Archives of Toxicology (Impact Factor: 5.98). 02/2012; 86(2):293-304. DOI: 10.1007/s00204-011-0751-9
Source: PubMed


A 20-kDa Kunitz-type trypsin-chymotrypsin inhibitor, Bauhinia purpurea trypsin inhibitor (BPLTI), has been isolated from the seeds of B. purpurea L. by using liquid chromatography procedures that involved ion exchange chromatography on Sp-Sepharose and Mono S and gel filtration on Superdex 75. BPLTI demonstrated protease inhibitory activities of 7226 BAEE units/mg and 65 BTEE units/mg toward trypsin and α-chymotrypsin, respectively. BPLTI was relatively thermal (0-60°C) and pH (3-10) stable and its activity could be decreased by dithiothreitol treatment. BPLTI exhibited a wide spectrum of anti-proliferative and pro-apoptotic activities especially on human hepatocellular carcinoma Hep G2 cells. However, it was devoid of a significant antiproliferative effect on immortal human hepatic WRL 68 cells. We show here that BPLTI stimulates apoptosis in Hep G2 cells, including (1) evoking DNA damage including the production of chromatin condensation and apoptotic bodies; (2) induction of cell apoptosis/necrosis; (3) mitochondrial membrane depolarization; and (4) increasing the production of cytokines. Taken together, our findings show for the first time that purified protease inhibitor from B. purpurea L. seeds is a promising candidate for the treatment of human hepatocellular carcinoma.

1 Follower
15 Reads
  • Source
    • "For example, the plant exhibited antimicrobial [8], antinociceptive, anti-inflammatory, and antipyretic [3] [9], antimycobacterial, antimalarial, antifungal, cytotoxic, and anti-inflammatory [10], anti-nephrotoxicity [11], and wound healing [12] activities. In vitro study has demonstrated that B. purpurea possesses antiproliferative [13], antioxidant [13] [14], and antimicrobial activities [14] [15], and also has potential as hepatocellular carcinoma inhibitor [16]. Interestingly, other studies have proved that B. purpurea leaf possesses antiulcer activity [17] [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In an attempt to further establish the pharmacological properties of Bauhinia purpurea (Fabaceae), hepatoprotective potential of methanol extract of B. purpurea leaves (MEBP) was investigated using the paracetamol- (PCM-) induced liver toxicity in rats. Five groups of rats (n = 6) were used and administered orally once daily with 10% DMSO (negative control), 200 mg/kg silymarin (positive control), or MEBP (50, 250, and 500 mg/kg) for 7 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay with the total phenolic content (TPC) also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of the normal hepatic structural was observed in group pretreated with silymarin and MEBP. Hepatotoxic rats pretreated with silymarin or MEBP exhibited significant decrease (P < 0.05) in ALT and AST enzyme level. Moreover, the extract also exhibited antioxidant activity and contained high TPC. In conclusion, MEBP exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and high phenolic content and thus warrants further investigation.
    Evidence-based Complementary and Alternative Medicine 06/2013; 2013(25):636580. DOI:10.1155/2013/636580 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) constitutes a predominant part of primary liver cancer which ranks as the fifth most common cancer as well as the third most common cause of cancer mortality. In view of the poor prognosis of unresectable liver cancers, it is of pivotal importance to develop novel chemotherapeutical regimens. RNase MC2 is a 14-kDa ribonuclease isolated from dietary bitter gourd (Momordica charantia) that manifested antitumor potential against breast cancers. In this study, we investigated the potential application of RNase MC2 on Hep G2 cells. We showed that RNase MC2 inhibited cell proliferation and induced cell apoptosis in both in vitro and in vivo studies. RNase MC2 treatment caused cell cycle arrest predominantly at the S-phase and apoptosis, which is associated with the activation of both caspase-8 and caspase-9 regulated caspase pathways. Our further investigation disclosed that RNase MC2 down-regulated the anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic protein Bak. Moreover, the phosphorylation of ERK and JNK was involved in the apoptosis process. Importantly, RNase MC2 significantly suppressed the growth of Hep G2 xenograft-bearing nude mice by inducing apoptosis. This notion is supported by data indicating an increased number of caspase-3- and PARP-positive cells, and TUNEL-positive cells in RNase MC2-treated tumor tissues. In summary, we have revealed the antitumor potential of RNase MC2 toward Hep G2 cells. Considering that bitter gourd is a common dietary component in many countries, this study may help to prompt the clinical application of RNase MC2.
    The international journal of biochemistry & cell biology 04/2012; 44(8):1351-60. DOI:10.1016/j.biocel.2012.04.013 · 4.05 Impact Factor
  • Source

    Archives of Toxicology 12/2012; 87(2). DOI:10.1007/s00204-012-1000-6 · 5.98 Impact Factor
Show more

Similar Publications