Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes?

Department of Biomedical Sciences, University of Padova, Italy.
Cellular and Molecular Life Sciences CMLS (Impact Factor: 5.86). 10/2011; 69(7):1077-104.
Source: PubMed

ABSTRACT An increase in the concentration of cytosolic free Ca(2+) is a key component regulating different cellular processes ranging from egg fertilization, active secretion and movement, to cell differentiation and death. The multitude of phenomena modulated by Ca(2+), however, do not simply rely on increases/decreases in its concentration, but also on specific timing, shape and sub-cellular localization of its signals that, combined together, provide a huge versatility in Ca(2+) signaling. Intracellular organelles and their Ca(2+) handling machineries exert key roles in this complex and precise mechanism, and this review will try to depict a map of Ca(2+) routes inside cells, highlighting the uniqueness of the different Ca(2+) toolkit components and the complexity of the interactions between them.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ca(2+)-signaling pathways and intracellular Ca(2+) channels are present in protozoa. Ancient origin of inositol 1,4,5-trisphosphate receptors (IP3Rs) and other intracellular channels predates the divergence of animals and fungi as evidenced by their presence in the choanoflagellate Monosiga brevicollis, the closest known relative to metazoans. The first protozoan IP3R cloned, from the ciliate Paramecium, displays strong sequence similarity to the rat type 3 IP3R. This ciliate has a large number of IP3- and ryanodine(Ry)-like receptors in 6 subfamilies suggesting the evolutionary adaptation to local requirements for an expanding diversification of vesicle trafficking. IP3Rs have also been functionally characterized in trypanosomatids, where they are essential for growth, differentiation, and establishment of infection. The presence of the mitochondrial calcium uniporter (MCU) in a number of protozoa indicates that mitochondrial regulation of Ca(2+) signaling is also an early appearance in evolution, and contributed to the discovery of the molecular nature of this channel in mammalian cells. There is only sequence evidence for the occurrence of two-pore channels (TPCs), transient receptor potential Ca(2+) channels (TRPCs) and intracellular mechanosensitive Ca(2+)-channels in Paramecium and in parasitic protozoa.
    European journal of pharmacology 11/2013; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Golgi apparatus (GA) is a dynamic intracellular Ca(2+) store endowed with complex Ca(2+) homeostatic mechanisms in part distinct from those of the endoplasmic reticulum (ER). We describe the generation of a novel fluorescent Ca(2+) probe selectively targeted to the medial-Golgi. We demonstrate that in the medial-Golgi: (i) Ca(2+) accumulation takes advantage of two distinct pumps, the sarco/endoplasmic reticulum Ca(2+) ATPase and the secretory pathway Ca(2+) ATPase1; (ii) activation of IP3 or ryanodine receptors causes Ca(2+) release, while no functional two-pore channel was found; (iii) luminal Ca(2+) concentration appears higher than that of the trans-Golgi, but lower than that of the ER, suggesting the existence of a cis- to trans-Golgi Ca(2+) concentration gradient. Thus, the GA represents a Ca(2+) store of high complexity where, despite the continuous flow of membranes and luminal contents, each sub-compartment maintains its Ca(2+) identity with specific Ca(2+) homeostatic characteristics. The functional role of such micro-heterogeneity in GA Ca(2+) handling is discussed.
    Journal of Molecular Cell Biology 08/2013; 5(4):266-76. · 7.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Divalent cations of two alkaline earth metals Ca(2+) and Mg(2+) and the transition metal Zn(2+) play vital roles in the immune system, and several immune disorders are associated with disturbances of their function. Until recently only Ca(2+) was considered to serve as a second messenger. However, signaling roles for Mg(2+) and Zn(2+) have been recently described, leading to a reevaluation of their role as potential second messengers. We review here the roles of these cations as second messengers in light of recent advances in Ca(2+), Mg(2+), and Zn(2+) signaling in the immune system. Developing a better understanding of these signaling cations may lead to new therapeutic strategies for immune disorders.
    Trends in Immunology 06/2014; · 12.03 Impact Factor


Available from
May 15, 2014