Chemical Transfection of Cells in Picoliter Aqueous Droplets in Fluorocarbon Oil

Department of Chemistry, Nanjing University, Nanjing, PR China.
Analytical Chemistry (Impact Factor: 5.64). 10/2011; 83(22):8816-20. DOI: 10.1021/ac2022794
Source: PubMed


The manipulation of cells inside water-in-oil droplets is essential for high-throughput screening of cell-based assays using droplet microfluidics. Cell transfection inside droplets is a critical step involved in functional genomics studies that examine in situ functions of genes using the droplet platform. Conventional water-in-hydrocarbon oil droplets are not compatible with chemical transfection due to its damage to cell viability and extraction of organic transfection reagents from the aqueous phase. In this work, we studied chemical transfection of cells encapsulated in picoliter droplets in fluorocarbon oil. The use of fluorocarbon oil permitted high cell viability and little loss of the transfection reagent into the oil phase. We varied the incubation time inside droplets, the DNA concentration, and the droplet size. After optimization, we were able to achieve similar transfection efficiency in droplets to that in the bulk solution. Interestingly, the transfection efficiency increased with smaller droplets, suggesting effects from either the microscale confinement or the surface-to-volume ratio.

Download full-text


Available from: Peisheng Xu, Aug 14, 2014
1 Follower
54 Reads
  • Source
    • "Its high-throughput potential can be realized with the generation of microcompartmentalised water-in-oil (w/o) single emulsion droplets3435. While the external oil phase of w/o emulsion is not compatible with cell culture applications as demonstrated by reduction in cell viability in single emulsion droplet culture36, the use of w/o/w double emulsion (DE) droplets circumvents the problem by introducing an outer aqueous phase to supply nutrients and oxygen for cell growth. One study reported the use of DE droplets as a programmable bioreactor to culture genetic modified Escherichia coli and analyze their inducible GFP expression by applying small molecule in the outer aqueous phase and allowing it to diffuse into the droplet core37. "
    [Show abstract] [Hide abstract]
    ABSTRACT: An attractive option for tissue engineering is to use of multicellular spheroids as microtissues, particularly with stem cell spheroids. Conventional approaches of fabricating spheroids suffer from low throughput and polydispersity in size, and fail to supplement cues from extracellular matrix (ECM) for enhanced differentiation. In this study, we report the application of microfluidics-generated water-in-oil-in-water (w/o/w) double-emulsion (DE) droplets as pico-liter sized bioreactor for rapid cell assembly and well-controlled microenvironment for spheroid culture. Cells aggregated to form size-controllable (30-80 μm) spheroids in DE droplets within 150 min and could be retrieved via a droplet-releasing agent. Moreover, precursor hydrogel solution can be adopted as the inner phase to produce spheroid-encapsulated microgels after spheroid formation. As an example, the encapsulation of human mesenchymal stem cells (hMSC) spheroids in alginate and alginate-arginine-glycine-aspartic acid (-RGD) microgel was demonstrated, with enhanced osteogenic differentiation further exhibited in the latter case.
    Scientific Reports 12/2013; 3:3462. DOI:10.1038/srep03462 · 5.58 Impact Factor
  • Source
    • "Microdroplets can be formed by focusing oil and water flows (Fig. 2 and 18). Single cell encapsulation is not traumatic for cells and allows cell survey, cell screening, multicellular organism growth 19, or transfection 20. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells.
    BioEssays 12/2012; 35(2). DOI:10.1002/bies.201200093 · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Droplet microfluidics provides a high-throughput platform for screening subjects and conditions involved in biology. Droplets with encapsulated beads and cells have been increasingly used for studying molecular and cellular biology. Droplet sorting is needed to isolate and analyze the subject of interest during such screening. The vast majority of current sorting techniques use fluorescence intensity emitted by each droplet as the only criterion. However, due to the randomness and imperfections in the encapsulation process, typically a mixed population of droplets with an uneven number of encapsulated particles results and is used for screening. Thus droplet sorting based on the number of encapsulated particles becomes necessary for isolating or enriching droplets with a specific occupancy. In this work, we developed a fluorescence-activated microfluidic droplet sorter that integrated a simple deflection mechanism based on the use of a solenoid valve and a sophisticated signal processing system with a microcontroller as the core. By passing droplets through a narrow interrogation channel, the encapsulated particles were detected individually. The microcontroller conducted the computation to determine the number of encapsulated particles in each droplet and made the sorting decision accordingly that led to actuation of the solenoid valve. We tested both fluorescent beads and stained cells and our results showed high efficiency and accuracy for sorting and enrichment.
    Lab on a Chip 11/2012; 13(1). DOI:10.1039/c2lc40950j · 6.12 Impact Factor
Show more