Article

The monocrotaline model of pulmonary hypertension in perspective

VU University Amsterdam, Amsterdamo, North Holland, Netherlands
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.04). 09/2011; 302(4):L363-9. DOI: 10.1152/ajplung.00212.2011
Source: PubMed

ABSTRACT Severe forms of pulmonary arterial hypertension (PAH) are characterized by various degrees of remodeling of the pulmonary arterial vessels, which increases the pulmonary vascular resistance and right ventricular afterload, thus contributing to the development of right ventricle dysfunction and failure. Recent years have seen advances in the understanding of the pathobiology of PAH; however, many important questions remain unanswered. Elucidating the pathobiology of PAH continues to be critical to design new effective therapeutic strategies, and appropriate animal models of PAH are necessary to achieve the task. Although the monocrotaline rat model of PAH has contributed to a better understanding of vascular remodeling in pulmonary hypertension, we question the validity of this model as a preclinically relevant model of severe plexogenic PAH. Here we review pertinent publications that either have been forgotten or ignored, and we reexamine the monocrotaline model in the context of human forms of PAH.

0 Followers
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Right ventricular (RV) function is a major determinant of the symptomatology and outcome in pulmonary hypertension. The normal RV is a thin-walled flow generator able to accommodate large changes in venous return but unable to maintain flow output in the presence of a brisk increase in pulmonary artery pressure. The RV chronically exposed to pulmonary hypertension undergoes hypertrophic changes and an increase in contractility, allowing for preserved flow output in response to peripheral demand. Failure of systolic function adaptation (homeometric adaptation, described by Anrep's law of the heart) results in increased dimensions (heterometric adaptation; Starling's law of the heart), with a negative effect on diastolic ventricular interactions, limitation of exercise capacity, and vascular congestion. Ventricular function is described by pressure-volume relationships. The gold standard of systolic function is maximum elastance (E max), or the maximal value of the ratio of pressure to volume. This value is not immediately sensitive to changes in loading conditions. The gold standard of afterload is arterial elastance (E a), defined by the ratio of pressure at E max to stroke volume. The optimal coupling of ventricular function to the arterial circulation occurs at an E max/E a ratio between 1.5 and 2. Patients with severe pulmonary hypertension present with an increased E max, a trend toward decreased E max/E a, and increased RV dimensions, along with progression of the pulmonary vascular disease, systemic factors, and left ventricular function. The molecular mechanisms of RV systolic failure are currently being investigated. It is important to refer biological findings to sound measurements of function. Surrogates for E max and E a are being developed through bedside imaging techniques.
    09/2014; 4(3):395-406. DOI:10.1086/677354
  • [Show abstract] [Hide abstract]
    ABSTRACT: The design and synthesis of two closely related series of prostacyclin receptor agonist compounds that showed excellent human IP receptor potency and efficacy is described. Compounds from this series showed in vivo activity after SC dosing in the monocrotaline model of PAH in rat. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Bioorganic & Medicinal Chemistry Letters 01/2015; 25(5). DOI:10.1016/j.bmcl.2015.01.024 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity-related pulmonary arterial hypertension in rats correlates with increased circulating inflammatory cytokines and lipids and with oxidant damage in the arterial wall but not with hypoxia Abstract: Obesity is causally linked to a number of comorbidities, including cardiovascular disease, dia-betes, renal dysfunction, and cancer. Obesity has also been linked to pulmonary disorders, including pulmonary arterial hypertension (PAH). It was long believed that obesity-related PAH was the result of hypoventilation and hypoxia due to the increased mechanical load of excess body fat. However, in recent years it has been proposed that the metabolic and inflammatory disturbances of obesity may also play a role in the develop-ment of PAH. To determine whether PAH develops in obese rats in the absence of hypoxia, we assessed pulmonary hemodynamics and pulmonary artery (PA) structure in the diet-resistant/diet-induced obesity (DR/DIO) and Zucker lean/fatty rat models. We found that high-fat feeding (DR/DIO) or overfeeding (Zucker) elicited PA remodeling, neomuscularization of distal arterioles, and elevated PA pressure, accompanied by right ventricular (RV) hypertrophy. PA thickening and distal neomuscularization were also observed in DIO rats on a low-fat diet. No evidence of hypoventilation or chronic hypoxia was detected in either model, nor was there a correlation between blood glucose or insulin levels and PAH. However, circulating inflammatory cytokine levels were increased with high-fat feeding or calorie overload, and hyperlipidemia and oxidant damage in the PA wall correlated with PAH in the DR/DIO model. We conclude that hyperlipidemia and peripheral inflamma-tion correlate with the development of PAH in obese subjects. Obesity-related inflammation may predispose to PAH even in the absence of hypoxia. INTRODUCTION It is currently estimated that two-thirds of Americans are overweight (body mass index from 25 to 30) or obese (body mass index greater than 30), with similar levels reported in other developed nations. 1,2 Excess body fat has been linked