Article

In Vitro Assessment of Shiitake Mushroom (Lentinula edodes) Extract for Its Antigingivitis Activity

Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X8LD, UK.
BioMed Research International (Impact Factor: 2.71). 09/2011; 2011:507908. DOI: 10.1155/2011/507908
Source: PubMed

ABSTRACT Gingivitis is a preventable disease characterised by inflammation of the gums due to the buildup of a microbial biofilm at the gingival margin. It is implicated as a precursor to periodontitis, a much more serious problem which includes associated bone loss. Unfortunately, due to poor oral hygiene among the general population, gingivitis is prevalent and results in high treatment costs. Consequently, the option of treating gingivitis using functional foods, which promote oral health, is an attractive one. Medicinal mushrooms, including shiitake, have long been known for their immune system boosting as well as antimicrobial effects; however, they have not been employed in the treatment of oral disease. In the current study, the effectiveness of shiitake mushroom extract was compared to that of the active component in the leading gingivitis mouthwash, containing chlorhexidine, in an artificial mouth model (constant depth film fermenter). The total bacterial numbers as well as numbers of eight key taxa in the oral community were investigated over time using multiplex qPCR. The results indicated that shiitake mushroom extract lowered the numbers of some pathogenic taxa without affecting the taxa associated with health, unlike chlorhexidine which has a limited effect on all taxa.

Download full-text

Full-text

Available from: Lena Ciric, Jul 06, 2015
1 Follower
 · 
248 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although foods are considered enhancing factors for dental caries and periodontitis, laboratory researches indicate that several foods and beverages contain components endowed with antimicrobial and antiplaque activities. A low molecular mass (LMM) fraction of an aqueous mushroom extract has been found to exert these activities in in vitro experiments against potential oral pathogens. We therefore conducted a clinical trial in which we tested an LMM fraction of shiitake mushroom extract formulated in a mouthrinse in 30 young volunteers, comparing the results with those obtained in two identical cohorts, one of which received water (placebo) and the other Listerine. Plaque index, gingival index and bacterial counts in plaque samples were determined in all volunteers over the 11 days of the clinical trial. Statistically significant differences (P < 0.05) were obtained for the plaque index on day 12 in subjects treated with mushroom versus placebo, while for the gingival index significant differences were found for both mushroom versus placebo and mushroom versus Listerine. Decreases in total bacterial counts and in counts of specific oral pathogens were observed for both mushroom extract and Listerine in comparison with placebo. The data suggest that a mushroom extract may prove beneficial in controlling dental caries and/or gingivitis/periodontitis.
    BioMed Research International 09/2011; 2011:857987. DOI:10.1155/2011/857987 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer). Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM), of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens), showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods.
    BioMed Research International 10/2011; 2011:274578. DOI:10.1155/2011/274578 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the huge diversity of antibacterial compounds, bacterial resistance to first-choice antibiotics has been drastically increasing. Moreover, the association between multiresistant microorganisms and nosocomial infections highlight the problem, and the urgent need for solutions. Natural resources have been exploited in the last years and among them, mushrooms could be an alternative source of new antimicrobials. In this review, we present an overview of the antimicrobial properties of mushroom extracts and highlight some of the active compounds identified, including low- and high-molecular weight (LMW and HMW, respectively) compounds. LMW compounds are mainly secondary metabolites, such as sesquiterpenes and other terpenes, steroids, anthraquinones, benzoic acid derivatives, and quinolines, but also primary metabolites such as oxalic acid. HMW compounds are mainly peptides and proteins. Data available from the literature indicate a higher antimicrobial activity of mushroom extracts against gram-positive bacteria. Among all the mushrooms, Lentinus edodes is the most studied species and seems to have a broad antimicrobial action against both gram-postive and gram-negative bacteria. Plectasin peptide, obtained from Pseudoplectania nigrella, is the isolated compound with the highest antimicrobial activity against gram-positive bacteria, while 2-aminoquinoline, isolated from Leucopaxillus albissimus, presents the highest antimicrobial activity against gram-negative bacteria.
    Planta Medica 09/2012; 78(16). DOI:10.1055/s-0032-1315370 · 2.34 Impact Factor