A case of uncommon acute respiratory distress syndrome: from shear stress to economic stress.

Service de Réanimation Médicale, Hôpital Pellegrin-Tripode, Place Amélie Raba Léon, 33076, Bordeaux Cedex, France, .
European Journal of Intensive Care Medicine (Impact Factor: 5.17). 10/2011; 38(1):168-9. DOI: 10.1007/s00134-011-2379-x
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lorazepam, midazolam, propofol and opioids are the primary agents that are used for sustained sedation and analgesia of critically ill patients. The choice of agent depends on safety profiles, expected outcomes, cost, patient characteristics and clinical experience. Few studies have comparatively evaluated the sedatives in terms of cost. Many factors, aside from drug costs, influence the total cost of sedation in the intensive care unit. This article reviews the cost parameters of intensive care unit sedation that are specific to the characteristics of commonly used sedatives and analgesics, evaluates economic studies and cost models, summarises alternative methods of sedation and analgesia, and provides practical recommendations for methods of cost containment, including daily sedation interruption, sedation monitoring and protocol implementation.
    Expert Opinion on Pharmacotherapy 11/2006; 7(15):2047-68. · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experience suggests that patients with alcohol and other drug use disorders (AOD) are commonly cared for in our intensive care units (ICU's) and require more sedation. We sought to determine the impact of AOD on sedation requirement and mechanical ventilation (MV) duration. Retrospective review of randomly selected records of adult patients undergoing MV in the medical ICU. Diagnoses of AOD were identified using strict criteria in Diagnostic and Statistical Manual of Mental Disorders, and through review of medical records and toxicology results. Of the 70 MV patients reviewed, 27 had AOD (39%). Implicated substances were alcohol in 22 patients, cocaine in 5, heroin in 2, opioids in 2, marijuana in 2. There was no difference between AOD and non-AOD patients in age, race, or reason for MV, but patients with AOD were more likely to be male (21 versus 15, p < 0.0001) and had a lower mean Acute Physiology and Chronic Health Evaluation II (22 versus 26, p = 0.048). While AOD patients received more lorazepam equivalents (0.5 versus 0.2 mg/, p = 0.004), morphine equivalents (0.5 versus 0.1 mg/, p = 0.03) and longer duration of infusions (16 versus 10 hours/day. medication, p = 0.002), they had similar sedation levels (Richmond Agitation-Sedation Scale (RASS) -2 versus -2, p = 0.83), incidence of agitation (RASS > or = 3: 3.0% versus 2.4% of observations, p = 0.33), and duration of MV (3.6 versus 3.9 days, p = 0.89) as those without AOD. The prevalence of AOD among medical ICU patients undergoing MV is high. Patients with AOD receive higher doses of sedation than their non-AOD counterparts to achieve similar RASS scores but do not undergo longer duration of MV.
    BMC Anesthesiology 01/2007; 7:3. · 1.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Approaches to removal of sedation and mechanical ventilation for critically ill patients vary widely. Our aim was to assess a protocol that paired spontaneous awakening trials (SATs)-ie, daily interruption of sedatives-with spontaneous breathing trials (SBTs). In four tertiary-care hospitals, we randomly assigned 336 mechanically ventilated patients in intensive care to management with a daily SAT followed by an SBT (intervention group; n=168) or with sedation per usual care plus a daily SBT (control group; n=168). The primary endpoint was time breathing without assistance. Data were analysed by intention to treat. This study is registered with, number NCT00097630. One patient in the intervention group did not begin their assigned treatment protocol because of withdrawal of consent and thus was excluded from analyses and lost to follow-up. Seven patients in the control group discontinued their assigned protocol, and two of these patients were lost to follow-up. Patients in the intervention group spent more days breathing without assistance during the 28-day study period than did those in the control group (14.7 days vs 11.6 days; mean difference 3.1 days, 95% CI 0.7 to 5.6; p=0.02) and were discharged from intensive care (median time in intensive care 9.1 days vs 12.9 days; p=0.01) and the hospital earlier (median time in the hospital 14.9 days vs 19.2 days; p=0.04). More patients in the intervention group self-extubated than in the control group (16 patients vs six patients; 6.0% difference, 95% CI 0.6% to 11.8%; p=0.03), but the number of patients who required reintubation after self-extubation was similar (five patients vs three patients; 1.2% difference, 95% CI -5.2% to 2.5%; p=0.47), as were total reintubation rates (13.8%vs 12.5%; 1.3% difference, 95% CI -8.6% to 6.1%; p=0.73). At any instant during the year after enrolment, patients in the intervention group were less likely to die than were patients in the control group (HR 0.68, 95% CI 0.50 to 0.92; p=0.01). For every seven patients treated with the intervention, one life was saved (number needed to treat was 7.4, 95% CI 4.2 to 35.5). Our results suggest that a wake up and breathe protocol that pairs daily spontaneous awakening trials (ie, interruption of sedatives) with daily spontaneous breathing trials results in better outcomes for mechanically ventilated patients in intensive care than current standard approaches and should become routine practice.
    The Lancet 02/2008; 371(9607):126-34. · 39.21 Impact Factor