Article

The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis.

Institut Curie, Centre de Recherche, F-75248 Paris, France.
Developmental Cell (Impact Factor: 10.37). 09/2011; 21(4):708-21. DOI: 10.1016/j.devcel.2011.08.019
Source: PubMed

ABSTRACT Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for lysosome-related organelle (LRO) biogenesis. PMEL-a component of melanocyte LROs (melanosomes)-is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis.

1 Bookmark
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted.
    Frontiers in Immunology 01/2014; 5:442.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rational design of nanocarriers for drug delivery approaches requires an unbiased knowledge of uptake mechanisms and intracellular trafficking pathways. Here we dissected these processes using a quantitative proteomics approach. We isolated intracellular vesicles containing superparamagnetic iron oxide polystyrene nanoparticles and analyzed their protein composition by label free quantitative mass spectrometry. The proteomic snapshot of organelle marker proteins revealed that an atypical macropinocytic-like mechanism mediated the entry of nanoparticles. We show that the entry mechanism is controlled by actin reorganization, atypical macropinocytic signaling and ADP-ribosylation factor 1. Additionally, our proteomics data demonstrated a central role for multivesicular bodies and multilamellar lysosomes in trafficking and final nanoparticle storage. This was confirmed by confocal microscopy and cryo-TEM measurements. By quantitatively analyzing the protein composition of nanoparticle-containing vesicles, our study clearly defines the routes of nanoparticle entry, intracellular trafficking and the proteomic milieu of a nanoparticle-containing vesicle.
    ACS Nano 09/2014; · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tetraspanins are a family of proteins with four transmembrane domains that play a role in many aspects of cell biology and physiology; they are also used by several pathogens for infection and regulate cancer progression. Many tetraspanins associate specifically and directly with a limited number of proteins, and also with other tetraspanins, thereby generating a hierarchical network of interactions. Through these interactions, tetraspanins are believed to have a role in cell and membrane compartmentalization. In this Cell Science at a Glance article and the accompanying poster, we describe the basic principles underlying tetraspanin-based assemblies and highlight examples of how tetraspanins regulate the trafficking and function of their partner proteins that are required for the normal development and function of several organs, including, in humans, the eye, the kidney and the immune system.
    Journal of Cell Science 08/2014; · 5.33 Impact Factor

Full-text (2 Sources)

Download
64 Downloads
Available from
May 16, 2014