Article

Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium.

Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10065, USA.
Cell (Impact Factor: 33.12). 09/2011; 147(1):199-208. DOI: 10.1016/j.cell.2011.07.046
Source: PubMed

ABSTRACT G protein-gated K(+) channels (Kir3.1-Kir3.4) control electrical excitability in many different cells. Among their functions relevant to human physiology and disease, they regulate the heart rate and govern a wide range of neuronal activities. Here, we present the first crystal structures of a G protein-gated K(+) channel. By comparing the wild-type structure to that of a constitutively active mutant, we identify a global conformational change through which G proteins could open a G loop gate in the cytoplasmic domain. The structures of both channels in the absence and presence of PIP(2) suggest that G proteins open only the G loop gate in the absence of PIP(2), but in the presence of PIP(2) the G loop gate and a second inner helix gate become coupled, so that both gates open. We also identify a strategically located Na(+) ion-binding site, which would allow intracellular Na(+) to modulate GIRK channel activity. These data provide a structural basis for understanding multiligand regulation of GIRK channel gating.

0 Followers
 · 
183 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research. © 2015. Published by The Company of Biologists Ltd.
    Journal of Experimental Biology 02/2015; 218(Pt 4):515-525. DOI:10.1242/jeb.110270 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Keppen-Lubinsky syndrome (KPLBS) is a rare disease mainly characterized by severe developmental delay and intellectual disability, microcephaly, large prominent eyes, a narrow nasal bridge, a tented upper lip, a high palate, an open mouth, tightly adherent skin, an aged appearance, and severe generalized lipodystrophy. We sequenced the exomes of three unrelated individuals affected by KPLBS and found de novo heterozygous mutations in KCNJ6 (GIRK2), which encodes an inwardly rectifying potassium channel and maps to the Down syndrome critical region between DIRK1A and DSCR4. In particular, two individuals shared an in-frame heterozygous deletion of three nucleotides (c.455_457del) leading to the loss of one amino acid (p.Thr152del). The third individual was heterozygous for a missense mutation (c.460G>A) which introduces an amino acid change from glycine to serine (p.Gly154Ser). In agreement with animal models, the present data suggest that these mutations severely impair the correct functioning of this potassium channel. Overall, these results establish KPLBS as a channelopathy and suggest that KCNJ6 (GIRK2) could also be a candidate gene for other lipodystrophies. We hope that these results will prompt investigations in this unexplored class of inwardly rectifying K(+) channels. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 01/2015; 96(2). DOI:10.1016/j.ajhg.2014.12.011 · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The methylotrophic yeast Pichia pastoris is a widely used recombinant expression host. P. pastoris combines the advantages of ease of use, relatively rapid expression times and low cost with eukaryotic co-translational and post-translational processing systems and lipid composition. The suitability of P. pastoris for high density controlled culture in bioreactors means large amounts of protein can be obtained from small culture volumes. This review details the key features of P. pastoris, which have made it a particularly useful system for the production of membrane proteins, including receptors, channels and transporters, for structural studies. In addition, this review provides an overview of all the constructs and cell strains used to produce membrane proteins, which have yielded high resolution structures. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
    Current Opinion in Structural Biology 02/2015; 32C:9-17. DOI:10.1016/j.sbi.2015.01.005 · 8.75 Impact Factor

Preview

Download
2 Downloads
Available from