Curcumin nanoformulations: a future nanomedicine for cancer.

Cancer Biology Research Center, Sanford Research/University of South Dakota, 2301 E. 60th Street North, Sioux Falls, SD 57104, USA.
Drug discovery today (Impact Factor: 6.63). 09/2011; 17(1-2):71-80. DOI: 10.1016/j.drudis.2011.09.009
Source: PubMed

ABSTRACT Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Colon cancer is the third most leading causes of death due to cancer worldwide and the chemo drug 5-fluorouracil's (5-FU) applicability is limited due to its non-specificity, low bioavailability and overdose. The efficacy of 5-FU in colon cancer chemo treatment could be improved by nanoencapsulation and combinatorial approach. In the present study curcumin (CUR), a known anticancer phytochemical, was used in combination with 5-FU and the work focuses on the development of a combinatorial nanomedicine based on 5-FU and CUR in N, O- carboxymethyl chitosan nanoparticles (N, O-CMC NPs). The developed 5-FU-N, O-CMC NPs and CUR-N, O-CMC NPs were found to be blood compatible. The in vitro drug release profile in pH 4.5 and 7.4 showed a sustained release profile over a period of 4 days. The combined exposure of the nanoformulations in colon cancer cells (HT 29) proved the enhanced anticancer effects. In addition, the in vivo pharmacokinetic data in mouse model revealed improved plasma concentrations of 5-FU and CUR which prolonged up to 72 hours unlike the bare drugs. In conclusion, the 5-FU and CUR released from the N, O-CMC NPs produced enhanced anticancer effects in vitro and improved plasma concentrations under in vivo conditions.
    European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 05/2014; · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol and curcumin are natural antioxidants found in the human diet that have been used in the prevention and treatment of different diseases associated with oxidative stress. Aiming to improve the antioxidant effects of resveratrol and curcumin, lipid-core nanocapsules containing the combination of both polyphenols were developed. Physicochemical characteristics were evaluated and compared to the formulations containing each polyphenol individually. Co-encapsulation did not influence nanotechnological characteristics, and all formulations presented mean diameter around 200 nm, low polydispersity index, and encapsulation efficiency close to 100%. Nanoencapsulation increases the photostability of resveratrol and curcumin, and co-encapsulation improves resveratrol photostability. The in vitro antioxidant activity of polyphenols against HO(•) radicals was enhanced by nanoencapsulation, and a better effect was observed after their co-nanoencapsulation. Also, nanocapsules exhibited controlled release profile, for both polyphenols. The results showed that the strategy to co-encapsulate resveratrol and curcumin is a promising approach to improve the performance of medicines used to prevent and treat diseases associated with oxidative stress.
    European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 04/2014; · 3.15 Impact Factor
  • Trends in Pharmacological Sciences 04/2014; · 9.25 Impact Factor


Available from