Article

Chemerin activates fibroblast-like synoviocytes in patients with rheumatoid arthritis.

Department of Medicine and Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
Arthritis research & therapy (Impact Factor: 4.27). 09/2011; 13(5):R158. DOI: 10.1186/ar3475
Source: PubMed

ABSTRACT Chemerin is a chemotactic agonist identified as a ligand for ChemR23 that is expressed on macrophages and dendritic cells (DCs). In this study, we analyzed the expression of chemerin and ChemR23 in the synovium of rheumatoid arthritis (RA) patients and the stimulatory effects of chemerin on fibroblast-like synoviocytes (FLSs) from RA patients.
Chemerin and ChemR23 expression in the RA synovium was ascertained by immunohistochemistry and Western blot analysis. Chemerin expression on cultured FLSs was analyzed by ELISA. ChemR23 expression on FLSs was determined by immunocytochemistry and Western blot analysis. Cytokine production from FLSs was measured by ELISA. FLS cell motility was evaluated by utilizing a scrape motility assay. We also examined the stimulating effect of chemerin on the phosphorylation of mitogen-activated protein kinase (MAPK), p44/42 mitogen-activated protein kinase (ERK1/2), p38MAPK, c-Jun N-terminal kinase (JNK)1/2 and Akt, as well as on the degradation of regulator of NF-κB (IκBα) in FLSs, by Western blot analysis.
Chemerin was expressed on endothelial cells and synovial lining and sublining cells. ChemR23 was expressed on macrophages, immature DCs and FLSs and a few mature DCs in the RA synovium. Chemerin and ChemR23 were highly expressed in the RA synovium compared with osteoarthritis. Chemerin and ChemR23 were expressed on unstimulated FLSs. TNF-α and IFN-γ upregulated chemerin production. Chemerin enhanced the production of IL-6, chemokine (C-C motif) ligand 2 and matrix metalloproteinase 3 by FLSs, as well as increasing FLS motility. The stimulatory effects of chemerin on FLSs were mediated by activation of ERK1/2, p38MAPK and Akt, but not by JNK1/2. Degradation of IκB in FLSs was not promoted by chemerin stimulation. Inhibition of the ERK1/2, p38MAPK and Akt signaling pathways significantly suppressed chemerin-induced IL-6 production. Moreover, blockade of the p38MAPK and Akt pathways, but not the ERK1/2 pathway, inhibited chemerin-enhanced cell motility.
The interaction of chemerin and ChemR23 may play an important role in the pathogenesis of RA through the activation of FLSs.

0 Bookmarks
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease characterized by severe joint injury. Recently, research has been focusing on the possible identification of predictor markers of disease onset and/or progression, of joint damage, and of therapeutic response. Recent findings have uncovered the role of white adipose tissue as a pleiotropic organ not only specialized in endocrine functions but also able to control multiple physiopathological processes, including inflammation. Adipokines are a family of soluble mediators secreted by white adipose tissue endowed with a wide spectrum of actions. This review will focus on the recent advances on the role of the adipokine network in the pathogenesis of RA. A particular attention will be devoted to the action of these proteins on RA effector cells, and on the possibility to use circulating levels of adipokines as potential biomarkers of disease activity and therapeutic response.
    Mediators of Inflammation 01/2014; 2014:425068. · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemerin is a widely distributed multifunctional secreted protein implicated in immune cell migration, adipogenesis, osteoblastogenesis, angiogenesis, myogenesis, and glucose homeostasis. Chemerin message is regulated by nuclear receptor agonists, metabolic signaling proteins and intermediates, and proinflammatory cytokines. Following translation chemerin is secreted as an inactive pro-protein, and its secretion can be regulated depending on cell type. Chemerin bioactivity is largely dependent on carboxyl-terminal proteolytic processing and removal of inhibitory residues. Chemerin is abundant in human epidermis where it is well-placed to provide barrier protection. In host defense, chemerin plays dual roles as a broad spectrum antimicrobial protein and as a leukocyte attractant for macrophages, dendritic cells, and NK cells. Here we review the mechanisms underlying chemerin regulation and its function in host defense.
    American journal of clinical and experimental immunology. 01/2014; 3(1):1-19.
  • Joint, bone, spine: revue du rhumatisme 08/2013; · 2.25 Impact Factor

Full-text (2 Sources)

View
28 Downloads
Available from
May 28, 2014

Similar Publications