Empirical derivation of the reference region for computing diagnostic sensitive ¹⁸fluorodeoxyglucose ratios in Alzheimer's disease based on the ADNI sample.

Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 09/2011; 1822(3):457-66. DOI: 10.1016/j.bbadis.2011.09.008
Source: PubMed

ABSTRACT Careful selection of the reference region for non-quantitative positron emission tomography (PET) analyses is critically important for Region of Interest (ROI) data analyses. We introduce an empirical method of deriving the most suitable reference region for computing neurodegeneration sensitive (18)fluorodeoxyglucose (FDG) PET ratios based on the dataset collected by the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Candidate reference regions are selected based on a heat map of the difference in coefficients of variation (COVs) of FDG ratios over time for each of the Automatic Anatomical Labeling (AAL) atlas regions normalized by all other AAL regions. Visual inspection of the heat map suggests that the portion of the cerebellum and vermis superior to the horizontal fissure is the most sensitive reference region. Analyses of FDG ratio data show increases in significance on the order of ten-fold when using the superior portion of the cerebellum as compared with the traditionally used full cerebellum. The approach to reference region selection in this paper can be generalized to other radiopharmaceuticals and radioligands as well as to other disorders where brain changes over time are hypothesized and longitudinal data is available. Based on the empirical evidence presented in this study, we demonstrate the usefulness of the COV heat map method and conclude that intensity normalization based on the superior portion of the cerebellum may be most sensitive to measuring change when performing longitudinal analyses of FDG-PET ratios as well as group comparisons in Alzheimer's disease. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: We describe the operationalization of the National Institute on Aging-Alzheimer's Association (NIA-AA) workgroup diagnostic guidelines pertaining to Alzheimer disease (AD) dementia in a large multicenter group of subjects with AD dementia. METHODS: Subjects with AD dementia from the Alzheimer's Disease Neuroimaging Initiative (ADNI) with at least 1 amyloid biomarker (n = 211) were included in this report. Biomarker data from CSF Aβ42, amyloid PET, fluorodeoxyglucose-PET, and MRI were examined. The biomarker results were assessed on a per-patient basis and the subject categorization as defined in the NIA-AA workgroup guidelines was determined. RESULTS: When using a requirement that subjects have a positive amyloid biomarker and single neuronal injury marker having an AD pattern, 87% (48% for both neuronal injury biomarkers) of the subjects could be categorized as "high probability" for AD. Amyloid status of the combined Pittsburgh compound B-PET and CSF results showed an amyloid-negative rate of 10% in the AD group. In the ADNI AD group, 5 of 92 subjects fit the category "dementia unlikely due to AD" when at least one neuronal injury marker was negative. CONCLUSIONS: A large proportion of subjects with AD dementia in ADNI may be categorized more definitively as high-probability AD using the proposed biomarker scheme in the NIA-AA criteria. A minority of subjects may be excluded from the diagnosis of AD by using biomarkers in clinically categorized AD subjects. In a well-defined AD dementia population, significant biomarker inconsistency can be seen on a per-patient basis.
    Neurology 05/2013; · 8.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study establishes that sparse canonical correlation analysis (SCCAN) identifies generalizable, structural MRI-derived cortical networks that relate to five distinct categories of cognition. We obtain multivariate psychometrics from the domain-specific sub-scales of the Philadelphia Brief Assessment of Cognition (PBAC). By using a training and separate testing stage, we find that PBAC-defined cognitive domains of language, visuospatial functioning, episodic memory, executive control, and social functioning correlate with unique and distributed areas of gray matter (GM). In contrast, a parallel univariate framework fails to identify, from the training data, regions that are also significant in the left-out test dataset. The cohort includes164 patients with Alzheimer's disease, behavioral-variant frontotemporal dementia, semantic variant primary progressive aphasia, non-fluent/agrammatic primary progressive aphasia, or corticobasal syndrome. The analysis is implemented with open-source software for which we provide examples in the text. In conclusion, we show that multivariate techniques identify biologically-plausible brain regions supporting specific cognitive domains. The findings are identified in training data and confirmedin test data.
    NeuroImage 10/2013; · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI.
    PLoS ONE 07/2013; · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014