Article

Novel insights into the biotin carboxylase domain reactions of pyruvate carboxylase from Rhizobium etli.

Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53726, United States.
Biochemistry (Impact Factor: 3.38). 09/2011; 50(45):9724-37. DOI:10.1021/bi2012788
Source: PubMed

ABSTRACT The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.

0 0
 · 
0 Bookmarks
 · 
87 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Mutation of Arg427 and Arg472 in Rhizobium etli pyruvate carboxylase to serine or lysine greatly increased the activation constant (K(a)) of acetyl CoA, with the increase being greater for the Arg472 mutants. These results indicate that while both these residues are involved in the binding of acetyl CoA to the enzyme, Arg472 is more important than Arg427. The mutations had substantially smaller effects on the k(cat) for pyruvate carboxylation. Part of the effects of the mutations was to increase the K(m) for MgATP and the K(a) for activation by free Mg(2+) determined at saturating acetyl CoA concentrations. The inhibitory effects of the mutations on the rates of the enzyme-catalyzed bicarbonate-dependent ATP cleavage, carboxylation of biotin, and phosphorylation of ADP by carbamoyl phosphate indicate that the major locus of the effects of the mutations was in the biotin carboxylase (BC) domain active site. Even though both Arg427 and Arg472 are distant from the BC domain active site, it is proposed that their contacts with other residues in the allosteric domain, either directly or through acetyl CoA, affect the positioning and orientation of the biotin-carboxyl carrier protein (BCCP) domain and thus the binding of biotin at the BC domain active site. On the basis of the kinetic analysis proposed here, it is proposed that mutations of Arg427 and Arg472 perturb these contacts and consequently the binding of biotin at the BC domain active site. Inhibition of pyruvate carboxylation by the allosteric inhibitor l-aspartate was largely unaffected by the mutation of either Arg427 or Arg472.
    Biochemistry 09/2012; · 3.38 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO(2) carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis.
    Protein Science 09/2012; 21(11):1597-619. · 2.74 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Numerous steady-state kinetic studies have examined the complex catalytic reaction mechanism of the multifunctional enzyme, pyruvate carboxylase (PC). Through initial velocity, product inhibition, isotopic exchange and alternate substrate experiments, early investigators established that PC catalyzes the MgATP-dependent carboxylation of pyruvate by HCO3 (-) through a nonclassical sequential Bi Bi Uni Uni reaction mechanism. This review surveys previous steady-state kinetic investigations of PC and evaluates the proposed hypotheses concerning the overall catalytic mechanism, nonlinear kinetics and active site coupling in the context of recent structural and mutagenic analyses of this multifunctional enzyme. The determination several PC holoenzyme structures have aided in corroborating the proposed molecular mechanisms by which catalysis occurs and established the inextricable link between the dynamic protein motions and complex kinetic mechanisms associated with PC activity. Unexpectedly, the conclusions drawn from these early steady-state kinetic investigations have consistently proven to be in fundamental agreement with our current understanding of PC catalysis, which is a testament to the overarching sophistication of the methods pioneered by Michaelis and Menten and further developed by Northrop, Cleland and others.
    FEBS Journal 01/2014; · 4.25 Impact Factor

Full-text

View
0 Downloads
Available from