Track structure, radiation quality and initial radiobiological events: Considerations based on the PARTRAC code experience

Laboratorio Energia Nucleare Applicata, Università degli studi di Pavia, Pavia, Italy.
International Journal of Radiation Biology (Impact Factor: 1.69). 09/2011; 88(1-2):77-86. DOI: 10.3109/09553002.2011.627976
Source: PubMed

ABSTRACT The role of track structures for understanding the biological effects of radiation has been the subject of research activities for decades. The physics that describes such processes is the core Monte Carlo codes, such as the biophysical PARTRAC (PARticle TRACks) code described in this review, which follow the mechanisms of radiation-matter interaction from the early stage. In this paper a review of the track structure theory (and of its possible extension concerning non-DNA targets) is presented.
The role of radiation quality and track structure is analyzed starting from the heavy ions results obtained with the biophysical Monte Carlo code PARTRAC (PARticles TRACks). PARTRAC calculates DNA damage in human cells based on the superposition of simulated track structures in liquid water to an 'atom-by-atom' model of human DNA.
Calculations for DNA fragmentation compared with experimental data for different radiation qualities are illustrated. As an example, the strong dependence of the complexity of DNA damage on radiation track structure, and the very large production of very small DNA fragments (lower than 1 kbp (kilo base pairs) usually not detected experimentally) after high LET (high-Linear Energy Transfer) irradiation is shown. Furthermore the possible importance of non-nuclear/non-DNA targets is discussed in the particular case of cellular membrane and mitochondria.
The importance of the track structure is underlined, in particular the dependence of a given late cellular effect on the spatial distribution of DNA double-strand breaks (DSB) along the radiation track. These results show that the relative biological effectiveness (RBE) for DSB production can be significantly larger than 1. Moreover the cluster properties of high LET radiation may determine specific initial targets and damage evolution.

Download full-text


Available from: Luca Mariotti, Apr 19, 2014
55 Reads
  • Source
    • "As described, H2AX phosphorylation following ionizing radiation is carried out primarily by the ATM kinase and also redundantly by the DNA-PK kinase. Additionally, activation of these kinases requires DNA end binding by the Mre11:Rad50:Nbs1 (MRN), and Ku70:Ku80 (Ku) complexes respectively [2]. Therefore, it is likely possible that following a secondary radiation exposure, activation of these kinases may be reduced and/or levels of, and/or the DNA binding capacity of, the MRN or Ku complexes may be reduced following the primary radiation resulting in reduced H2AX phosphorylation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiation therapy is one of the most common and effective strategies used to treat cancer. The irradiation is usually performed with a fractionated scheme, where the dose required to kill tumour cells is given in several sessions, spaced by specific time intervals, to allow healthy tissue recovery. In this work, we examined the DNA repair dynamics of cells exposed to radiation delivered in fractions, by assessing the response of histone-2AX (H2AX) phosphorylation (γ-H2AX), a marker of DNA double strand breaks. γ-H2AX foci induction and disappearance were monitored following split dose irradiation experiments in which time interval between exposure and dose were varied. Experimental data have been coupled to an analytical theoretical model, in order to quantify key parameters involved in the foci induction process. Induction of γ-H2AX foci was found to be affected by the initial radiation exposure with a smaller number of foci induced by subsequent exposures. This was compared to chromatin relaxation and cell survival. The time needed for full recovery of γ-H2AX foci induction was quantified (12 hours) and the 1:1 relationship between radiation induced DNA double strand breaks and foci numbers was critically assessed in the multiple irradiation scenarios.
    PLoS ONE 11/2013; 8(11):e79541. DOI:10.1371/journal.pone.0079541 · 3.23 Impact Factor
  • Source
    • "If valid, these fi ndings add to the story of the importance of understanding 2003b). Th is would be consistent with the densely ionizing structure of an α -particle track not only resulting in complex DNA double-strand breaks (a DSB with associated additional damage sites within a few base pairs) but also, a correlation of DSB sites across nucleosomes or chromatin fi bre resulting in small DNA fragments and potentially impacting on the effi ciency of repair (Lobrich et al. 1996, Alloni et al. 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Cells of the lung are at risk from exposure to low and moderate doses of ionizing radiation from a range of environmental and medical sources. To help assess human health risks from such exposures, a better understanding of the frequency and types of chromosome aberration initially-induced in human lung cell types is required to link initial DNA damage and rearrangements with transmission potential and, to assess how this varies with radiation quality. Materials and methods: We exposed normal human bronchial lung epithelial (NHBE) cells in vitro to 0.5 and 1 Gy low-linear energy transfer (LET) γ-rays and a low fluence of high-LET α-particles and assayed for chromosome aberrations in premature chromosome condensation (PCC) spreads by 24-color multiplex-fluorescence in situ hybridization (M-FISH). Results: Both simple and complex aberrations were induced in a LET and dose-dependent manner; however, the frequency and complexity observed were reduced in comparison to that previously reported in spherical cell types after exposure to comparable doses or fluence of radiation. Approximately 1–2% of all exposed cells were categorized as being capable of transmitting radiation-induced chromosomal damage to future NHBE cell generations, irrespective of dose. Conclusion: One possible mechanistic explanation for this reduced complexity is the differing geometric organization of chromosome territories within ellipsoid nuclei compared to spherical nuclei. This study highlights the need to better understand the role of nuclear organization in the formation of exchange aberrations and, the influence three-dimensional (3D) tissue architecture may have on this in vivo.
    International Journal of Radiation Biology 05/2013; 89(11). DOI:10.3109/09553002.2013.805889 · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a computational model for calculating the yield of radiation-induced chromosomal aberrations in human cells based on a stochastic Monte Carlo approach and calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. A previously developed DNA-fragmentation model for high- and low-LET radiation called the NASARadiationTrackImage model was enhanced to simulate a stochastic process of the formation of chromosomal aberrations from DNA fragments. The current version of the model gives predictions of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G(0)/G(1) cell cycle phase during the first cell division after irradiation. As the model can predict smaller-sized deletions and rings (<3 Mbp) that are below the resolution limits of current cytogenetic analysis techniques, we present predictions of hypothesized small deletions that may be produced as a byproduct of properly repaired DNA double-strand breaks (DSB) by nonhomologous end-joining. Additionally, the model was used to scale chromosomal exchanges in two or three chromosomes that were obtained from whole-chromosome FISH painting analysis techniques to whole-genome equivalent values.
    Radiation Research 04/2012; 177(6):727-37. DOI:10.2307/41545128 · 2.91 Impact Factor
Show more