Article

Adaptive servo-ventilation improves renal function in patients with heart failure

Department of Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Hondoh 1-1-1, Akita 010-8543, Japan.
Respiratory medicine (Impact Factor: 2.33). 09/2011; 105(12):1946-53. DOI: 10.1016/j.rmed.2011.09.001
Source: PubMed

ABSTRACT Impaired cardiac function and sleep-disordered breathing (SDB) are associated with progression of chronic kidney disease (CKD) in heart failure (HF) patients. Adaptive servo-ventilation (ASV) therapy improves cardiac function in HF patients regardless of the SDB severity through hemodynamic support and prevention of repetitive hypoxic stress. This study was designed to test the hypothesis that ASV therapy improves renal function in HF patients with SDB.
Of 59 consecutively enrolled HF patients, 43 with moderate-to-severe SDB underwent ASV therapy. HF patients were divided into the ASV-treated group (n = 27) and the non-ASV-treated group (n = 16). Estimated glomerular filtration rate (eGFR), echocardiographic parameters, and inflammatory biomarkers were measured before and 12 months after ASV initiation. Improvement in the eGFR was found in the ASV-treated group, but not in the non-ASV-treated group. There was a positive correlation between the increases in eGFR and left ventricular ejection fraction (r = 0.488, p = 0.001). The changes in high-sensitivity C-reactive protein were negatively correlated with change in the eGFR (r = -0.416, p = 0.006).
ASV therapy could improve renal dysfunction in HF patients through hemodynamic support. Additionally, prevention of SDB with the use of ASV therapy could exert anti-inflammatory effects, which could contribute to the improvement of renal function in HF patients.

0 Bookmarks
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oscillatory breathing (OB) patterns are observed in pre-term infants, patients with cardio-renal impairment, and in otherwise healthy humans exposed to high altitude. Enhanced carotid body (CB) chemoreflex sensitivity is common to all of these populations and is thought to contribute to these abnormal patterns by destabilizing the respiratory control system. OB patterns in chronic heart failure (CHF) patients are associated with greater levels of tonic and chemoreflex-evoked sympathetic nerve activity (SNA), which is associated with greater morbidity and poor prognosis. Enhanced chemoreflex drive may contribute to tonic elevations in SNA by strengthening the relationship between respiratory and sympathetic neural outflow. Elimination of CB afferents in experimental models of CHF has been shown to reduce OB, respiratory-sympathetic coupling, and renal SNA, and to improve autonomic balance in the heart. The CB chemoreceptors may play an important role in progression of CHF by contributing to respiratory instability and OB, which in turn further exacerbates tonic and chemoreflex-evoked increases in SNA to the heart and kidney.
    Frontiers in Physiology 11/2014; 5(438). DOI:10.3389/fphys.2014.00438
  • Source
    International Journal of Cardiology 12/2014; 182C:216-218. DOI:10.1016/j.ijcard.2014.12.149 · 6.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of chronic kidney disease (CKD) is increasing, which presents challenges for both patients and health-care budgets. Although this phenomenon has been attributed to the growth in diabetes, hypertension, and obesity, sleep apnea and nocturnal hypoxemia may also contribute to the pathogenesis of CKD and its progression to kidney failure. Two pathophysiologic mechanisms responsible for CKD are glomerular hyperfiltration and chronic intrarenal hypoxia, resulting in tubulointerstitial injury, the final common pathway to end-stage kidney disease (ESKD). Multiple descriptive studies have demonstrated an association between CKD and sleep apnea. Although sleep apnea is common in patients with CKD and associated with significant nocturnal hypoxemia, it is often relatively free of sleep-related symptoms, making it difficult to detect without objective nocturnal monitoring. Nevertheless, sleep apnea and nocturnal hypoxemia have been associated with loss of kidney function and kidney injury, suggesting that they contribute to the pathogenesis of continued deterioration in kidney function. There are several pathways through which sleep apnea may achieve this, including a direct effect of intrarenal hypoxia and activation of the systemic and renal renin-angiotensin system. Further research is required to better understand these relationships and determine whether specific interventions in patients with sleep apnea have an impact on clinical outcomes, such as reducing the prevalence of CKD and delaying its progression to ESKD.
    Chest 10/2014; 146(4):1114-22. DOI:10.1378/chest.14-0596 · 7.13 Impact Factor