Stem cell antigen-1 deficiency enhances the chemopreventive effect of peroxisome proliferator-activated receptorγ activation.

Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA..
Cancer Prevention Research (Impact Factor: 4.89). 09/2011; 5(1):51-60. DOI: 10.1158/1940-6207.CAPR-11-0256
Source: PubMed

ABSTRACT Stem cell antigen-1 (Sca-1, Ly6A) is a glycerophosphatidylinositol (GPI)-anchored protein that was identified as a murine marker of bone marrow stem cells. Although Sca-1 is widely used to enrich for stem and progenitor cells in various tissues, little is known about its function and associated signaling pathways in normal and malignant cells. Here, we report that the absence of Sca-1 in the mammary gland resulted in higher levels of PPARγ and PTEN, and a reduction of pSer84PPARγ, pERK1/2, and PPARδ. This phenotype correlated with markedly increased sensitivity of Sca-1 null mice to PPARγ agonist GW7845 and insensitivity to PPARδ agonist GW501516. Reduction of Sca-1 expression in mammary tumor cells by RNA interference resulted in a phenotype similar to the Sca-1 deficient mammary gland, as evidenced by increased PPARγ expression and transcriptional activity, resulting in part from a lesser susceptibility to proteasomal degradation. These data implicate Sca-1 as a negative regulator of the tumor suppressor effects of PPARγ.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bovine mammary stem cells (MaSC) are a source of ductal and lobulo-alveolar tissue during the development of the mammary gland and its remodeling in repeating lactation cycles. We hypothesize that the number of MaSC, their molecular properties, and interactions with their niche may be essential in order to determine the mammogenic potential in heifers. To verify this hypothesis, we compared the number of MaSC and the transcriptomic profile in the mammary tissue of 20-month-old, non-pregnant dairy (Holstein-Friesian, HF) and beef (Limousin, LM) heifers. For the identification and quantification of putative stem/progenitor cells in mammary tissue sections, scanning cytometry was used with a combination of MaSC molecular markers: stem cell antigen-1 (Sca-1) and fibronectin type III domain containing 3B (FNDC3B) protein. Cytometric analysis revealed a significantly higher number of Sca-1(pos)FNDC3B(pos) cells in HF (2.94 ± 0.35 %) than in LM (1.72 ± 0.20 %) heifers. In HF heifers, a higher expression of intramammary hormones, growth factors, cytokines, chemokines, and transcription regulators was observed. The model of mammary microenvironment favorable for MaSC was associated with the regulation of genes involved in MaSC maintenance, self-renewal, proliferation, migration, differentiation, mammary tissue remodeling, angiogenesis, regulation of adipocyte differentiation, lipid metabolism, and steroid and insulin signaling. In conclusion, the mammogenic potential in postpubertal dairy heifers is facilitated by a higher number of MaSC and up-regulation of mammary auto- and paracrine factors representing the MaSC niche.
    Journal of applied genetics 04/2014; · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progesterone receptor (PR) antagonists are potent antitumor agents in carcinogen and progestin-dependent mammary tumorigenesis models through both PR- and non-PR-mediated mechanisms. The PR antagonist mifepristone/RU486 has been used primarily as an abortifacient possessing high affinity for both the PR and glucocorticoid receptors (GR). To determine whether mifepristone would be effective as a chemopreventive agent, we assessed its effect on progestin/7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis in wild-type (WT) and estrogen receptor-α-positive (ER(+)) transgenic mice expressing the dominant-negative Pax8PPARγ (Pax8) fusion protein. Mifepristone administered at a dose of 2.5 mg significantly delayed mammary tumorigenesis in WT, but not in Pax8 mice, whereas, a three-fold higher dose almost completely blocked tumorigenesis in both WT and Pax8 mice. The sensitivity of WT mice to 2.5 mg mifepristone correlated with an expression profile of 79 genes in tumors, 52 of which exhibited the opposite response in Pax8 mice, and corresponded primarily to the downregulation of genes associated with metabolism, inflammation, and invasion. These results suggest that the chemopreventive activity of mifepristone in WT mice correlates with a specific gene expression signature that is associated with multiple nuclear receptor signaling pathways.
    Cancer Prevention Research 03/2012; 5(5):754-64. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer stem cells (BCSCs) initiate and sustain breast cancers, and several putative markers have been proposed to prospectively isolate BCSC from the non-cancer stem cell population. The candidate BCSC marker Sca-1 is a GPI-linked membrane protein expressed on activated lymphocytes, hematopoietic stem cells and mammary stem cells. Sca-1+ cells were purified from the murine mammary tumour cell line 4T1. However, this did not enrich for a stem-like, tumour initiating or metastatic cell population in vitro or in vivo. Sphere formation, which induced high levels of Sca-1, reduced BCSC gene expression with near complete loss of spontaneous metastasis from sphere-derived tumours. This was associated with decreased expression of TGFB2 and reduced activation of the TGFβ signalling pathway in spheres. Both TGFB2 expression in vitro and spontaneous metastasis in vivo could be restored upon re-differentiation of sphere cells by exposure to serum, and this occurred with retention of the majority of Sca-1 expression. We conclude that while putative BCSC, including spheres, can have high Sca-1 expression, Sca-1 itself is not a marker of BCSC in established 4T1 tumours or the cell line.
    Cancer letters 03/2012; 323(1):20-8. · 4.86 Impact Factor

Full-text (2 Sources)

Available from
Jul 28, 2014