Article

Reconstructing visual experiences from brain activity evoked by natural movies.

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Current biology: CB (Impact Factor: 9.92). 09/2011; 21(19):1641-6. DOI: 10.1016/j.cub.2011.08.031
Source: PubMed

ABSTRACT Quantitative modeling of human brain activity can provide crucial insights about cortical representations [1, 2] and can form the basis for brain decoding devices [3-5]. Recent functional magnetic resonance imaging (fMRI) studies have modeled brain activity elicited by static visual patterns and have reconstructed these patterns from brain activity [6-8]. However, blood oxygen level-dependent (BOLD) signals measured via fMRI are very slow [9], so it has been difficult to model brain activity elicited by dynamic stimuli such as natural movies. Here we present a new motion-energy [10, 11] encoding model that largely overcomes this limitation. The model describes fast visual information and slow hemodynamics by separate components. We recorded BOLD signals in occipitotemporal visual cortex of human subjects who watched natural movies and fit the model separately to individual voxels. Visualization of the fit models reveals how early visual areas represent the information in movies. To demonstrate the power of our approach, we also constructed a Bayesian decoder [8] by combining estimated encoding models with a sampled natural movie prior. The decoder provides remarkable reconstructions of the viewed movies. These results demonstrate that dynamic brain activity measured under naturalistic conditions can be decoded using current fMRI technology.

Full-text

Available from: An Thanh Vu, May 26, 2015
0 Followers
 · 
218 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Better acquisition protocols and analysis techniques are making it possible to use fMRI to obtain highly detailed visualizations of brain processes. In particular we focus on the reconstruction of natural images from BOLD responses in visual cortex. We expand our linear Gaussian framework for percept decoding with Gaussian mixture models to better represent the prior distribution of natural images. Reconstruction of such images then boils down to probabilistic inference in a hybrid Bayesian network. In our set-up, different mixture components correspond to different character categories. Our framework can automatically infer higher-order semantic categories from lower-level brain areas. Furthermore, the framework can gate semantic information from higher-order brain areas to enforce the correct category during reconstruction. When categorical information is not available, we show that automatically learned clusters in the data give a similar improvement in reconstruction. The hybrid Bayesian network leads to highly accurate reconstructions in both supervised and unsupervised settings.
    Frontiers in Computational Neuroscience 01/2014; 8:173. DOI:10.3389/fncom.2014.00173 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW) model from computer vision. Both these computational models use visual dictionaries, candidate features of intermediate complexity, to represent visual scenes, and the models have been proven effective in automatic object and scene recognition. These models however differ in the computation of visual dictionaries and pooling techniques. We investigated where in the brain and to what extent human fMRI responses to short video can be accounted for by multiple hierarchical levels of the HMAX and BoW models. Brain activity of 20 subjects obtained while viewing a short video clip was analyzed voxel-wise using a distance-based variation partitioning method. Results revealed that both HMAX and BoW explain a significant amount of brain activity in early visual regions V1, V2, and V3. However, BoW exhibits more consistency across subjects in accounting for brain activity compared to HMAX. Furthermore, visual dictionary representations by HMAX and BoW explain significantly some brain activity in higher areas which are believed to process intermediate features. Overall our results indicate that, although both HMAX and BoW account for activity in the human visual system, the BoW seems to more faithfully represent neural responses in low and intermediate level visual areas of the brain.
    Frontiers in Computational Neuroscience 02/2015; 8(168):1-10. DOI:10.3389/fncom.2014.00168 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a technology to read brain states from measurable brain activities, brain decoding are widely applied in industries and medical sciences. In spite of high demands in these applications for a universal decoder that can be applied to all individuals simultaneously, large variation in brain activities across individuals has limited the scope of many studies to the development of individual-specific decoders. In this study, we used deep neural network (DNN), a nonlinear hierarchical model, to construct a subject-transfer decoder. Our decoder is the first successful DNN-based subject-transfer decoder. When applied to a large-scale functional magnetic resonance imaging (fMRI) database, our DNN-based decoder achieved higher decoding accuracy than other baseline methods, including support vector machine (SVM). In order to analyze the knowledge acquired by this decoder, we applied principal sensitivity analysis (PSA) to the decoder and visualized the discriminative features that are common to all subjects in the dataset. Our PSA successfully visualized the subject-independent features contributing to the subject-transferability of the trained decoder.