Expanded Polyglutamine-Binding Peptoid as a Novel Therapeutic Agent for Treatment of Huntington's Disease

Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
Chemistry & biology (Impact Factor: 6.52). 09/2011; 18(9):1113-25. DOI: 10.1016/j.chembiol.2011.06.010
Source: PubMed

ABSTRACT Polyglutamine(polyQ)-expanded proteins are potential therapeutic targets for the treatment of polyQ expansion disorders such as Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). Here, we used an amino-terminal fragment of a mutant Huntingtin protein (Htt-N-82Q) as bait in an unbiased screen of a 60,000 peptoid library. Peptoid HQP09 was selected from the isolated hits and confirmed as a specific ligand of Htt-N-82Q and Atxn3-77Q mutant proteins in biochemical experiments. We identified three critical residues in the HQP09 sequence that are important for its activity and generated a minimal derivative, HQP09_9, which maintains the specific polyQ-binding activity. We demonstrated that HQP09 and HQP09_9 inhibited aggregation of Htt-N-53Q in vitro and exerted Ca(2+)-stabilizing and neuroprotective effects in experiments with primary striatal neuronal cultures derived from HD mice. We further demonstrated that intracerebroventricular delivery of HQP09 to an HD mouse model resulted in reduced accumulation of mutant Huntingtin aggregates and improved motor behavioral outcomes. These results suggest that HQP09 and similar peptoids hold promise as novel therapeutics for developing treatments for HD, SCA3, and other polyglutamine expansion disorders.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyglutamine (polyQ) aggregation plays a pivotal role in the pathological process of Huntington's disease and other polyQ disorders. Therefore, strategies aiming at restoring dysfunction and reducing stresses mediated by polyQ toxicity are of therapeutic interest for proteotoxicity diseases. Salidroside, a glycoside from Rhodiola rosea, has been shown to have a variety of bioactivities, including antioxidant activity. Using transgenic Caenorhabditis elegans models, we show here that salidroside is able to reduce neuronal death and behavioral dysfunction mediated by polyQ expressed in ASH neurons, but the neuroprotective effect is not associated with prevention of polyQ aggregation per se. Further experiments reveal that the neuroprotective effect of salidroside in C. elegans models involves its antioxidant capabilities, including decrease of ROS levels and paraquat-induced mortality, increase of antioxidant enzyme activities and reduction of lipid peroxidation. These results demonstrate that salidroside exerts its neuroprotective function against polyQ toxicity via oxidative stress pathways.
    Molecules 06/2014; 19(6):7757–7769. DOI:10.3390/molecules19067757 · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutant huntingtin (HTT) protein is the cause of Huntington's disease (HD), an incurable neurological disorder. Almost all patients are heterozygous for mutant HTT and approaches that reduce levels of mutant HTT while leaving expression of wild-type HTT intact might be ideal options for therapeutic development. We have developed several allele-selective strategies for silencing HTT, including single-stranded silencing RNAs (ss-siRNAs). ss-siRNAs are oligonucleotides containing chemical modifications that permit action through the RNA interference (RNAi) pathway. Modified ss-siRNAs chosen to test the effects of varying oligomer length, lipid modification, the introduction of mismatched bases, and variation of chemical modification. We find that several modified ss-siRNA are potent and allele-selective inhibitors of HTT expression. An ss-siRNA with three mismatched bases relative to the CAG repeat was an allele-selective inhibitor of HTT expression in the HdhQ175 mouse model. Multiple allele-selective ss-siRNAs provide a wide platform of modifications to draw on for further optimization and therapeutic development. Our data provide insights into how ss-siRNAs can be modified to improve their properties and facilitate the discovery of the lead compounds necessary for further development.
    04/2014; DOI:10.1089/nat.2013.0476
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peptoids are positional isomers of peptides: peptoid sidechains are attached to backbone nitrogens rather than α-carbons. Peptoids constitute a class of sequence-specific polymers resistant to biological degradation and potentially as diverse, structurally and functionally, as proteins. While molecular simulation of proteins is commonplace, relatively few tools are available for peptoid simulation. Here, we present a first-generation atomistic forcefield for peptoids. Our forcefield is based on the peptide forcefield CHARMM22, with key parameters tuned to match both experimental data and quantum mechanical calculations for two model peptoids (dimethylacetamide and a sarcosine dipeptoid). We used this forcefield to demonstrate that solvation of a dipeptoid substantially modifies the conformations it can access. We also simulated a crystal structure of a peptoid homotrimer, H-(N-2-phenylethyl glycine)3 -OH, and we show that experimentally observed structural and dynamical features of the crystal are accurately described by our forcefield. The forcefield presented here provides a starting point for future development of peptoid-specific simulation methods within CHARMM. © 2013 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 02/2014; 35(5). DOI:10.1002/jcc.23478 · 3.60 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014