Article

Wnt Signaling as a Potential Therapeutic Target for Frontotemporal Dementia

Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
Neuron (Impact Factor: 15.98). 09/2011; 71(6):955-7. DOI: 10.1016/j.neuron.2011.09.002
Source: PubMed

ABSTRACT Figure 1. Reduced expression levels of Progranulin (GRN) are present from early embryonic life. However, the clinical symptoms of disease arise more than half a century later. Initially, the disease is in its latent, compensated phase. During this time the pathophysiological events slowly progress, but compensatory mechanisms presumably prevent the emergence of the disease phenotype. In this latent disease phase, progranulin deficiency triggers a complex dysregulation of the Wnt signaling pathway, where gene products belonging to the stimulatory, canonical Wnt pathway are upregulated, while negative regulators of Wnt signaling show reduced expression levels. This results in disruption of mitochondrial energy metabolism, inefficient protein degradation and altered cell cycling. At this phase, Wnt dysregulation might be, at least partially, a compensatory event, which is likely to become detrimental over a prolonged period of time. The neurodegenerative phase is characterized by lysosomal alterations, appearance of complex inflammatory processes, disrupted synaptic transmission, myelination defects, and appearance of TDP-43 inclusions, which jointly lead to neuronal death. During this neurodegenerative phase Wnt signaling changes are likely to be detrimental to brain function, rather than compensatory. The molecular pathology and cell loss ultimately result in functional disturbances and clinical diagnosis of FTD.

Download full-text

Full-text

Available from: Karoly Mirnics, Jul 04, 2015
0 Followers
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelet-derived growth factor-CC (PDGF-CC) is the third member of the PDGF family, and has been implicated both in embryogenesis and development of the CNS. The biological function of this isoform however, remains largely unexplored in the context of HIV-associated dementia (HAD). In the present study, we demonstrate that exposure of human neuroblastoma cells SH-SY5Y to HIV transactivator protein Tat resulted in decreased intrinsic expression of PDGF-CC as evidenced by RT-PCR and western blot assays. Reciprocally, pretreatment of SH-SY5Y cells with PDGF-CC abrogated Tat-mediated neurotoxicity by mitigating apoptosis and neurite & MAP-2 loss. Using pharmacological and loss of function approaches we identified the role of phosphatidylinositol 3-kinase (PI3K)/Akt signaling in PDGF-CC-mediated neuroprotection. We report herein a novel role about the involvement of transient receptor potential canonical (TRPC) channel 1 in modulation of calcium transients in PDGF-CC-mediated neuroprotection. Furthermore we also demonstrated PDGF-CC-mediated inactivation of the downstream mediator - glycogen synthase kinase 3β (GSK3β) evidenced by its phosphorylation at Ser-9. This was further validated by gain and loss of function studies using cells transfected with either the wild type or mutant GSK3β constructs. Intriguingly, pretreatment of cells with either the PI3K inhibitor or TRPC blocker resulted in failure of PDGF-CC to inactivate GSK3β, thereby suggesting the intersection of PI3K and TRPC signaling at GSK3β. Taken together our findings lead to the suggestion that PDGF-CC could be developed as a therapeutic target to reverse Tat-mediated neurotoxicity with implications for HAD.
    PLoS ONE 10/2012; 7(10):e47572. DOI:10.1371/journal.pone.0047572 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PGRN, a pleiotrophic growth factor, is known to play an important role in the maintenance and regulation of the homeostatic dynamics of normal tissue development, proliferation, regeneration, and the host-defense response and therefore, has been widely studied in the fields of infectious diseases, wound healing, tumorigenesis, and neuroproliferative and degenerative diseases. PGRN has also emerged as a multifaceted immune-regulatory molecule through regulating the signaling pathways known to be critical for immunology, especially TNF/TNFR signaling. In this review, we start with updates about the interplays of PGRN with ECM proteins, proteolytic enzymes, inflammatory cytokines, and cell-surface receptors, as well as various pathophysiological processes involved. We then review the data supporting an emerging role of PGRN in the fields of the "Cubic of I", namely, immunity, infection, and inflammation, with special focus on its regulation of autoimmune syndromes. We conclude with insights into the immunomodulating, anti-inflammatory, therapeutic potential of PGRN in treating diseases with an inflammatory etiology in a vast range of medical specialties.
    Journal of leukocyte biology 10/2012; 93(2). DOI:10.1189/jlb.0812429 · 4.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous study demonstrated that platelet-derived growth factor-BB (PDGF-BB) increased the cell proliferation of primary rat neuronal progenitor cells (NPCs). However, whether PDGF-BB regulates neurogenesis in HIV-associated neurological disorder (HAND) remains largely unknown. In this study we demonstrated that pre-treatment of NPCs with PDGF-BB restored Tat-mediated impairment of cell proliferation via activation of p38 and JNK MAPK pathways. Moreover, treatment with PDGF-BB induced inactivation of glycogen synthase kinase-3β (GSK-3β), evidenced by its phosphorylation at Ser9, this effect was significantly inhibited by the p38 and JNK inhibitors. Level of nuclear β-catenin, the primary substrate of GSK-3β, was also concomitantly increased following PDGF-BB treatment, suggesting that PDGF-BB stimulates NPC proliferation via acting on GSK-3β to promote nuclear accumulation of β-catenin. This was further validated by gain and loss of function studies using cells transfected with either the wild type or mutant GSK-3β constructs. Together these data underpin the role of GSK-3β/β-catenin as a novel target that regulates NPC proliferation mediated by PDGF-BB with implications for therapeutic intervention for reversal of impaired neurogenesis inflicted by Tat.
    Journal of Neuroimmune Pharmacology 11/2013; 9(2). DOI:10.1007/s11481-013-9509-x · 3.17 Impact Factor