Phosphorylation of collapsin response mediator protein-2 disrupts neuronal maturation in a model of adult neurogenesis: Implications for neurodegenerative disorders

University of California, San Diego
Molecular Neurodegeneration (Impact Factor: 5.29). 09/2011; 6:67. DOI: 10.1186/1750-1326-6-67
Source: PubMed

Recent studies suggest that the pathogenic process in neurodegenerative disorders may disrupt mature neuronal circuitries and neurogenesis in the adult brain. Abnormal activation of CDK5 is associated with neurodegenerative disorders, and recently a critical role for CDK5 in adult neurogenesis has been identified. We have developed an in vitro model of abnormal CDK5 activation during adult hippocampal neurogenesis, and here we used this model to investigate aberrantly phosphorylated downstream targets of CDK5.
Abnormal CDK5 activation in an in vitro model of adult neurogenesis results in hyperphosphorylation of collapsin-response mediator protein-2 (CRMP2) and impaired neurite outgrowth. Inhibition of CDK5, or expression of a non-phosphorylatable (S522A) CRMP2 construct reduced CRMP2 hyperphosphorylation, and reversed neurite outgrowth deficits. CRMP2 plays a role in microtubule dynamics; therefore we examined the integrity of microtubules in this model using biochemical and electron microscopy techniques. We found that microtubule organization was disrupted under conditions of CDK5 activation. Finally, to study the relevance of these findings to neurogenesis in neurodegenerative conditions associated with HIV infection, we performed immunochemical analyses of the brains of patients with HIV and transgenic mice expressing HIV-gp120 protein. CDK5-mediated CRMP2 phosphorylation was significantly increased in the hippocampus of patients with HIV encephalitis and in gp120 transgenic mice, and this effect was rescued by genetic down-modulation of CDK5 in the mouse model.
These results reveal a functional mechanism involving microtubule destabilization through which abnormal CDK5 activation and CRMP2 hyperphosphorylation might contribute to defective neurogenesis in neurodegenerative disorders such as HIV encephalitis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Migration of HIV infected cells into the CNS is associated with a spectrum of neurological disorders, ranging from milder forms of HIV-associated neurocognitive disorders (HAND) to HIV-associated dementia (HAD). These neuro-psychiatric syndromes are related to the neurodegenerative pathology triggered by the release of HIV proteins and cytokine/chemokines from monocytes/macrophages into the CNS -a condition known as HIV encephalitis (HIVE). As a result of more effective combined anti-retroviral therapy patients with HIV are living longer and thus the frequency of HAND has increased considerably, resulting in an overlap between the neurodegenerative pathology associated with HIV and that related to aging. In fact, HIV infection is believed to hasten the aging process. The mechanisms through which HIV and aging lead to neurodegeneration include: abnormal calcium flux, excitotoxicity, signaling abnormalities, oxidative stress and autophagy defects. Moreover, recent studies have shown that defects in the processing and transport of neurotrophic factors such as fibroblast growth factors (FGFs), neural growth factor (NGF) and brain-derived growth factor (BDNF) might also play a role. Recent evidence implicates alterations in neurotrophins in the pathogenesis of neurodegeneration associated with HAND in the context of aging. Here, we report FGF overexpression curtails gp120-induced neurotoxicity in a double transgenic mouse model. Furthermore, our data show disparities in brain neurotrophic factor levels may be exacerbated in HIV patients over 50 years of age. In this review, we discuss the most recent findings on neurotrophins and HAND in the context of developing new therapies to combat HIV infection in the aging population.
    Journal of Neuroimmune Pharmacology 02/2014; DOI:10.1007/s11481-013-9520-2 · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: All cases of Huntington's disease (HD) are caused by mutant huntingtin protein (mhtt), yet the molecular mechanisms that link mhtt to disease symptoms are not fully elucidated. Given glycogen synthase kinase-3 (GSK3) is implicated in several neurodegenerative diseases as a molecular mediator of neuronal decline and widely touted as a therapeutic target we investigated GSK3 in cells expressing mhtt, brains of R6/1 HD mice and post-mortem human brain samples. Consistency in data across the two models and the human brain samples indicates decreased GSK3 signalling contributes to neuronal dysfunction in HD. Inhibitory phosphorylation of GSK3 (pGSK3) was elevated in mhtt cells and this appeared related to an overall energy metabolism deficit as the mhtt cells had less ATP and inhibiting ATP production in control cells expressing non-pathogenic htt with paraquat also increased pGSK3. pGSK3 was increased and ATP levels decreased in the frontal cortex and striatum of R6/1 mice and levels of cortical pGSK3 inversely correlated with cognitive function of the mice. Consistent with decreased GSK3 activity in the R6/1 mouse brain β-catenin levels were increased and phosphorylation of collapsin response mediator protein-2 (CRMP2) decreased in the frontal cortex where inhibitory phosphorylation of GSK3 was greatest. pGSK3 was predominantly undetectable in HD and healthy control human brain samples, but levels of total GSK3 were decreased in the HD-affected frontal cortex and this correlated with decreased pCRMP2. Thus, disruptions to cortical GSK3 signalling, possibly due to localised energy metabolism deficits, appear to contribute to the cognitive symptoms of HD.
    Human Molecular Genetics 03/2014; DOI:10.1093/hmg/ddu119 · 6.68 Impact Factor
  • Neural Regeneration Research 07/2014; 9(11):1104-1107. DOI:10.4103/1673-5374.135308 · 0.23 Impact Factor

Full-text (3 Sources)

Available from
May 16, 2014