Self-refocused adiabatic pulse for spin echo imaging at 7 T

Department of Radiology, Stanford University, Stanford, CA, USA.
Magnetic Resonance in Medicine (Impact Factor: 3.57). 04/2012; 67(4):1077-85. DOI: 10.1002/mrm.23089
Source: PubMed


Spin echo pulse sequences are used to produce clinically important T(2) contrast. However, conventional 180° radiofrequency pulses required to generate a spin echo are highly susceptible to the B(1) inhomogeneity at high magnetic fields such as 7 Tesla (7 T), resulting in varying signal and contrast over the region of interest. Adiabatic 180° pulses may be used to replace conventional 180° pulses in spin echo sequences to provide greater immunity to the inhomogeneous B(1) field at 7 T. However, because the spectral profile of an adiabatic 180° pulse has nonlinear phase, pairs of these pulses are needed for proper refocusing, resulting in increased radiofrequency power deposition and long minimum echo times. We used the adiabatic Shinnar Le-Roux method to generate a matched-phase adiabatic 90°-180° pulse pair to obviate the need for a second adiabatic 180° pulse for phase refocusing. The pulse pair was then reformulated into a single self-refocused pulse to minimize the echo time, and phantom and in vivo experiments were performed to validate pulse performance. The self-refocused adiabatic pulse produced transmit profiles that were substantially more uniform than those achieved using a conventional spin echo sequence.

Download full-text


Available from: Daniel M Spielman, Oct 02, 2015
1 Follower
33 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: The understanding and control of spin dynamics play a fundamental role in modern NMR imaging, for devising new ways to monitor an object's density as well as for enabling the tailored excitation of spins in space. It has recently been shown that by relying on spatiotemporal encoding (SPEN), new forms of single-scan multidimensional NMR spectroscopy and imaging become feasible. The present study extends those imaging developments, by introducing a new class of multidimensional excitation pulses that relies on SPEN concepts. We focus in particular on a family of "hybrid" 2D radiofrequency (RF) pulses that operate in both direct and reciprocal excitation space, and which can spatially sculpt the spin magnetization in manners that are beyond the reach of sequential 1D pulse shaping. These SPEN-based 2D pulses are compatible with a majority of single- and multi-scan imaging techniques. Like the corresponding SPEN-based hybrid 2D acquisitions, these pulses can benefit from a high robustness against field inhomogeneities and/or offset effects that affect their k-space-based counterparts. These properties are analyzed, and illustrated with numerical simulations and model experiments.
    Journal of Magnetic Resonance 11/2012; 226C:22-34. DOI:10.1016/j.jmr.2012.10.010 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eight different reduced field-of-view (FOV) MRI techniques suitable for high field human imaging were implemented, optimized, and evaluated at 7T. These included selective Inner-Volume Imaging (IVI) based methods, and Outer-Volume Suppression (OVS) techniques, some of which were previously unexplored at ultra-high fields. Design considerations included use of selective composite excitation and adiabatic refocusing radio-frequency (RF) pulses to address B1 inhomogeneities, twice-refocused spin echo techniques, frequency-modulated pulses to sharply define suppressed regions, and pulse sequence designs to improve SNR in multi-slice scans. The different methods were quantitatively compared in phantoms and in vivo human brain images to provide measurements of relative signal to noise ratio (SNR), power deposition (specific absorption rate, SAR), suppression of signal, artifact strength and prevalence, and general image quality. Multi-slice signal losses in out-of-slice locations were simulated for IVI methods, and then measured experimentally across a range of slice numbers. Corrections for B1 nonuniformities demonstrated an improved SNR and a reduction in artifact power in the reduced-FOV, but produced an elevated SAR. Multi-slice sequences with reordering of pulses in traditional and twice-refocused IVI techniques demonstrated an improved SNR compared to conventional methods. The combined results provide a basis for use of reduced-FOV techniques for human imaging localized to a small FOV at 7T.
    Magnetic Resonance Imaging 07/2013; 31(8). DOI:10.1016/j.mri.2013.05.003 · 2.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: To introduce a method that provides simultaneous spatial and spectral selectivity, whose implementation is less demanding than-and quality comparable to-conventional 2D spectral-spatial counterparts. THEORY: Spatiotemporal encoding concepts lead to a spatially selective, chemical-shift-dependent echo, with simultaneous dephasing of all other off-resonant species. The approach only requires applying a pair of suitable radiofrequency-swept pulses, and allows arbitrary shaping of the spatial profiles. METHODS: Based on arguments derived for chirp pulses operating in the sequential-sweep approximation, quadratic-phase SLR excitation and refocusing waveforms were designed and used to collect 2D slice- and shift-selective images on a 7 T microimaging system (phantoms). The same strategy was used to obtain multi-slice echo-planar and spin-echo images of breast on human volunteers in a 3 T scanner. RESULTS: The method managed to deliver excellent shift-selective multi-slice images in phantoms and human volunteers. Simultaneous water and fat images were also collected in a single, interleaved acquisition mode on both platforms, using straightforward sequence and reconstruction modifications of the basic scheme. CONCLUSION: A new way to achieve chemical shift selectivity with high quality spatial profiling is achieved, without the usual requirements for playing out fast oscillating gradients in conjunction with carefully timed radiofrequency pulses. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 02/2014; 71(2). DOI:10.1002/mrm.24718 · 3.57 Impact Factor
Show more