Novel mutations of TCOF1 gene in European patients with Treacher Collins syndrome.

Fondazione Policlinico di Tor Vergata, Rome, Italy.
BMC Medical Genetics (Impact Factor: 2.45). 09/2011; 12:125. DOI: 10.1186/1471-2350-12-125
Source: PubMed

ABSTRACT Treacher Collins syndrome (TCS) is one of the most severe autosomal dominant congenital disorders of craniofacial development and shows variable phenotypic expression. TCS is extremely rare, occurring with an incidence of 1 in 50.000 live births. The TCS distinguishing characteristics are represented by down slanting palpebral fissures, coloboma of the eyelid, micrognathia, microtia and other deformity of the ears, hypoplastic zygomatic arches, and macrostomia. Conductive hearing loss and cleft palate are often present. TCS results from mutations in the TCOF1 gene located on chromosome 5, which encodes a serine/alanine-rich nucleolar phospho-protein called Treacle. However, alterations in the TCOF1 gene have been implicated in only 81-93% of TCS cases.
In this study, the entire coding regions of the TCOF1 gene, including newly described exons 6A and 16A, were sequenced in 46 unrelated subjects suspected of TCS clinical indication.
Fifteen mutations were reported, including twelve novel and three already described in 14 sporadic patients and in 3 familial cases. Moreover, seven novel polymorphisms were also described. Most of the mutations characterised were microdeletions spanning one or more nucleotides, in addition to an insertion of one nucleotide in exon 18 and a stop mutation. The deletions and the insertion described cause a premature termination of translation, resulting in a truncated protein.
This study confirms that almost all the TCOF1 pathogenic mutations fall in the coding region and lead to an aberrant protein.

  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from craniofacial abnormalities to cognitive impairment. Despite different origins, we report that in addition to sharing many phenotypes, DS and FAS may have common underlying mechanisms of development. METHODS: Literature was surveyed for DS and FAS as well as mouse models. Gene expression and apoptosis were compared in embryonic mouse models of DS and FAS by qPCR, immunohistochemical and immunoflurorescence analyses. The craniometry was examined using MicroCT at postnatal day 21. RESULTS: A literature survey revealed over 20 comparable craniofacial and structural deficits in both humans with DS and FAS and corresponding mouse models. Similar phenotypes were experimentally found in pre- and postnatal craniofacial and neurological tissues of DS and FAS mice. Dysregulation of two genes, Dyrk1a and Rcan1, key to craniofacial and neurological precursors of DS, was shared in craniofacial precursors of DS and FAS embryos. Increased cleaved caspase 3 expression was also discovered in comparable regions of the craniofacial and brain precursors of DS and FAS embryos. Further mechanistic studies suggested overexpression of trisomic Ttc3 in DS embyros may influence nuclear pAkt localization and cell survival. CONCLUSIONS: This first and initial study indicates that DS and FAS share common dysmorphologies in humans and animal models. This work also suggests common mechanisms at cellular and molecular levels that are disrupted by trisomy or alcohol consumption during pregnancy and lead to craniofacial and neurological phenotypes associated with DS or FAS. Birth Defects Research (Part A), 2013. © 2013 Wiley Periodicals, Inc.
    Birth Defects Research Part A Clinical and Molecular Teratology 04/2013; 97(4). DOI:10.1002/bdra.23129 · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treacher Collins syndrome (TCS) is the most common and well-known craniofacial disorder caused by mutations in the genes involved in pre-rRNA transcription, which include the TCOF1 gene. This study explored the role of TCOF1 mutations in Chinese patients with TCS. Mutational analysis of the TCOF1 gene was performed in three patients using polymerase chain reaction and direct sequencing. Among these three patients, two additional TCOF1 variations, a novel 18 bp deletion and a novel 1 bp insertion mutation, were found in patient 1, together with a novel nonsense mutation (p.Ser476X) and a previously reported 4 bp deletion (c.1872_1875delTGAG) in other patients. Pedigree analysis allowed for prediction of the character of the mutation, which was either pathological or not. The 18 bp deletion of six amino acids, Ser-Asp-Ser-Glu-Glu-Glu (798*803), which was located in the CKII phosphorylation site of treacle, seemed relatively benign for TCS. By contrast, another novel mutation of c.1072_1073insC (p.Gln358ProfsX23) was a frameshift mutation and expected to result in a premature stop codon. This study provides insights into the functional domain of treacle and illustrates the importance of clinical and family TCS screening for the interpretation of novel sequence alterations.
    Molecular Genetics and Genomics 07/2014; 289(6). DOI:10.1007/s00438-014-0883-8 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treacher Collins syndrome (TCS) or Franceschetti syndrome is an autosomal dominant disorder of craniofacial development with variable phenotypic expression. It presents with characteristic facial appearance enabling it to be easily recognizable. A case of a 10-year-old girl having TCS is briefly described in this article. A review of the etiology, clinical features, differential diagnosis, and treatment options are also discussed.
    10/2014; 5(4):532-4. DOI:10.4103/0976-237X.142826

Full-text (3 Sources)

Available from
May 27, 2014