Article

Anti-nucleocapsid protein immune responses counteract pathogenic effects of Rift Valley fever virus infection in mice.

Special Pathogens Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa.
PLoS ONE (Impact Factor: 3.73). 01/2011; 6(9):e25027. DOI: 10.1371/journal.pone.0025027
Source: PubMed

ABSTRACT The known virulence factor of Rift Valley fever virus (RVFV), the NSs protein, counteracts the antiviral effects of the type I interferon response. In this study we evaluated the expression of several genes in the liver and spleen involved in innate and adaptive immunity of mice immunized with a RVFV recombinant nucleocapsid protein (recNP) combined with Alhydrogel adjuvant and control animals after challenge with wild type RVFV. Mice immunized with recNP elicited an earlier IFNβ response after challenge compared to non-immunized controls. In the acute phase of liver infection in non-immunized mice there was a massive upregulation of type I and II interferon, accompanied by high viral titers, and the up- and downregulation of several genes involved in the activation of B- and T-cells, indicating that both humoral and cellular immunity is modulated during RVFV infection. Various genes involved in pro-inflammatory responses and with pro-apoptotic effects were strongly upregulated and anti-apoptotic genes were downregulated in liver of non-immunized mice. Expression of many genes involved in B- and T-cell immunity were downregulated in spleen of non-immunized mice but normal in immunized mice. A strong bias towards apoptosis and inflammation in non-immunized mice at an acute stage of liver infection associated with suppression of several genes involved in activation of humoral and cellular immunity in spleen, suggests that RVFV evades the host immune response in more ways than only by inhibition of type I interferon, and that immunopathology of the liver plays a crucial role in RVF disease progression.

0 Bookmarks
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) is a vector-borne virus that causes high neonatal mortality in livestock and deadly haemorrhagic fever in humans. In this paper, we describe the generation of monoclonal antibodies (mabs) against all three structural proteins of RVFV (glycoproteins Gn and Gc and nucleocapsid protein NP). After immunization of BALB/c mice with individual recombinant proteins, a total of 45 clones secreting ELISA-reactive monoclonal antibodies against NP, Gn and Gc epitopes were obtained. Twelve clones were directed to NP, 28 to Gn, and 5 to Gc. Western blot analysis revealed that most of the mabs were reactive to linearized epitopes on recombinant as well as native virus proteins. Six mabs against NP, 21 against Gn and all mabs against Gc also detected conformational epitopes, as shown by indirect immunofluorescence on RVFV-infected cells. All of the mabs were evaluated for their use in a competition enzyme-linked immunosorbent assay (ELISA) for the detection of a RVFV infection. Several mabs were identified that competed with polyclonal rabbit serum, and one of them - mab Gn123, raised against Gn protein - was selected for a proof-of-principle study with field sera from a recent Rift Valley fever outbreak. The novel Gn-based competition ELISA demonstrated high performance, offering a promising alternative and addition to serological assays based on nucleocapsid protein.
    Archives of Virology 10/2013; · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) infection is often associated with pronounced liver damage. Previously, our studies revealed altered host phospho-signaling responses (NFκB, MAPK and DNA damage responses) in RVFV infected epithelial cells that correlated with a cellular stress response. Here, we report that RVFV infection of liver cells leads to an increase in reactive oxygen species (ROS). Our data suggests the presence of the viral protein NSs in the mitochondria of infected cells, hence contributing to early increase in ROS. Increased ROS levels correlated with activation of NFκB (p65) and p53 responses, which in conjunction with infection, was also reflected as macromolecular rearrangements observed using size fractionation of protein lysates. Additionally, we documented an increase in cytokine expression and pro-apoptotic gene expression with infection, which was reversed with antioxidant treatment. Collectively, we identified ROS and oxidative stress as critical contributors to apoptosis of liver cells during RVFV infection.
    Virology 01/2014; 449:270-286. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) infection is often associated with pronounced liver damage. Previously, our studies revealed altered host phospho-signaling responses (NFκB, MAPK and DNA damage responses) in RVFV infected epithelial cells that correlated with a cellular stress response. Here, we report that RVFV infection of liver cells leads to an increase in reactive oxygen species (ROS). Our data suggests the presence of the viral protein NSs in the mitochondria of infected cells, hence contributing to early increase in ROS. Increased ROS levels correlated with activation of NFκB (p65) and p53 responses, which in conjunction with infection, was also reflected as macromolecular rearrangements observed using size fractionation of protein lysates. Additionally, we documented an increase in cytokine expression and pro-apoptotic gene expression with infection, which was reversed with antioxidant treatment. Collectively, we identified ROS and oxidative stress as critical contributors to apoptosis of liver cells during RVFV infection.
    · 3.35 Impact Factor

Full-text (2 Sources)

View
50 Downloads
Available from
Jun 5, 2014