Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini.

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2011; 108(40):16588-93. DOI: 10.1073/pnas.1113621108
Source: PubMed

ABSTRACT Centromere protein A (CENP-A) is a histone H3 variant that marks centromere location on the chromosome. To study the subunit structure and folding of human CENP-A-containing chromatin, we generated a set of nucleosomal arrays with canonical core histones and another set with CENP-A substituted for H3. At the level of quaternary structure and assembly, we find that CENP-A arrays are composed of octameric nucleosomes that assemble in a stepwise mechanism, recapitulating conventional array assembly with canonical histones. At intermediate structural resolution, we find that CENP-A-containing arrays are globally condensed relative to arrays with the canonical histones. At high structural resolution, using hydrogen-deuterium exchange coupled to mass spectrometry (H/DX-MS), we find that the DNA superhelical termini within each nucleosome are loosely connected to CENP-A, and we identify the key amino acid substitution that is largely responsible for this behavior. Also the C terminus of histone H2A undergoes rapid hydrogen exchange relative to canonical arrays and does so in a manner that is independent of nucleosomal array folding. These findings have implications for understanding CENP-A-containing nucleosome structure and higher-order chromatin folding at the centromere.


Available from: Walter Englander, Apr 17, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: A fundamental challenge for the survival of all organisms is maintaining the integrity of the genome in all cells. Cells must therefore segregate their replicated genome equally during each cell division. Eukaryotic organisms package their genome into a number of physically distinct chromosomes, which replicate during S phase and condense during prophase of mitosis to form paired sister chromatids. During mitosis, cells form a physical connection between each sister chromatid and microtubules of the mitotic spindle, which segregate one copy of each chromatid to each new daughter cell. The centromere is the DNA locus on each chromosome that creates the site of this connection. In this review, we present a brief history of centromere research and discuss our current knowledge of centromere establishment, maintenance, composition, structure, and function in mitosis. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
    Cold Spring Harbor perspectives in biology 11/2014; 7(1). DOI:10.1101/cshperspect.a015818 · 8.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Centromere identity and its epigenetic maintenance require the incorporation of a histone H3 variant called CENP-A at centromeres. CENP-A mislocalization to ectopic sites may disrupt chromatin-based processes and chromosome segregation, so it is important to uncover the mechanisms by which this variant is exclusively localized to centromeres. Here, we identify a role for the conserved chromatin-modifying complex FACT (facilitates chromatin transcription/transactions) in preventing budding yeast CENP-A(Cse4) mislocalization to euchromatin by mediating its proteolysis. The Spt16 subunit of the FACT complex binds to Psh1 (Pob3/Spt16/histone), an E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. The interaction between Psh1 and Spt16 is critical for both CENP-A(Cse4) ubiquitylation and its exclusion from euchromatin. We found that Psh1 cannot efficiently ubiquitylate CENP-A(Cse4) nucleosomes in vitro, suggesting that additional factors must facilitate CENP-A(Cse4) removal from chromatin in vivo. Consistent with this, a Psh1 mutant that cannot associate with FACT has a reduced interaction with CENP-A(Cse4) in vivo. Together, our data identify a previously unknown mechanism to maintain centromere identity and genomic stability through the FACT-mediated degradation of ectopically localized CENP-A(Cse4).
    Genes & Development 08/2014; 28(16):1815-26. DOI:10.1101/gad.243113.114 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of nucleosomes containing either canonical H3 or its centromere-specific variant CENP-A were investigated using molecular dynamics simulations. The simulations showed that the histone cores were structurally stable during simulation periods of 100 ns and 50 ns, while DNA was highly flexible at the entry and exit regions and partially dissociated from the histone core. In particular, approximately 20-25 bp of DNA at the entry and exit regions of the CENP-A nucleosome exhibited larger fluctuations than DNA at the entry and exit regions of the H3 nucleosome. Our detailed analysis clarified that this difference in dynamics was attributable to a difference in two basic amino acids in the αN helix; two arginine (Arg) residues in H3 were substituted by lysine (Lys) residues at the corresponding sites in CENP-A. The difference in the ability to form hydrogen bonds with DNA of these two residues regulated the flexibility of nucleosomal DNA at the entry and exit regions. Our exonuclease III assay consistently revealed that replacement of these two Arg residues in the H3 nucleosome by Lys enhanced endonuclease susceptibility, suggesting that the DNA ends of the CENP-A nucleosome are more flexible than those of the H3 nucleosome. This difference in the dynamics between the two types of nucleosomes may be important for forming higher order structures in different phases.
    PLoS ONE 01/2015; 10(3):e0120635. DOI:10.1371/journal.pone.0120635 · 3.53 Impact Factor