Retargeting Clostridium difficile Toxin B to Neuronal Cells as a Potential Vehicle for Cytosolic Delivery of Therapeutic Biomolecules to Treat Botulism

Division of Infectious Diseases, Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA.
Journal of Toxicology 01/2012; 2012:760142. DOI: 10.1155/2012/760142
Source: PubMed


Botulinum neurotoxins (BoNTs) deliver a protease to neurons which can cause a flaccid paralysis called botulism. Development of botulism antidotes will require neuronal delivery of agents that inhibit or destroy the BoNT protease. Here, we investigated the potential of engineering Clostridium difficile toxin B (TcdB) as a neuronal delivery vehicle by testing two recombinant TcdB chimeras. For AGT-TcdB chimera, an alkyltransferase (AGT) was appended to the N-terminal glucosyltransferase (GT) of TcdB. Recombinant AGT-TcdB had alkyltransferase activity, and the chimera was nearly as toxic to Vero cells as wild-type TcdB, suggesting efficient cytosolic delivery of the AGT/GT fusion. For AGT-TcdB-BoNT/A-Hc, the receptor-binding domain (RBD) of TcdB was replaced by the equivalent RBD from BoNT/A (BoNT/A-Hc). AGT-TcdB-BoNT/A-Hc was >25-fold more toxic to neuronal cells and >25-fold less toxic to Vero cells than AGT-TcdB. Thus, TcdB can be engineered for cytosolic delivery of biomolecules and improved targeting of neuronal cells.


Available from: Greice Krautz-Peterson
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extraordinary persistence of intoxication occurring after exposure to some Botulinum neurotoxin (BoNT) serotypes is both a therapeutic marvel and a biodefense nightmare. Understanding the mechanisms underlying BoNT persistence will offer new strategies for improving the efficacy and extending the applications of BoNT therapeutic agents as well as for treating the symptoms of botulism. Research indicates that the persistence of BoNT intoxication can be influenced both by the ability of the toxin protease or its cleaved soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein substrate to resist turnover. Protease turnover seems to be mediated in part by the ubiquitin-proteasome system (UPS) and efforts to manipulate the UPS may prove to be an effective strategy for improving therapeutic utility of BoNT products and in the development of botulism antidotes.
    Current topics in microbiology and immunology 01/2013; 364:179-96. DOI:10.1007/978-3-642-33570-9_9 · 4.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytotoxic necrotizing factors from E. coli (CNF1, CNF2) and Yersinia (CNFy) share N-terminal sequence similarity with Pasteurella multocida toxin (PMT). This common N-terminal region harbors the receptor-binding and translocation domains that mediate uptake and delivery of the C-terminal catalytic cargo domains into the host cytosol. Subtle variations in the N-terminal ~500 amino acids of CNFs and PMT could allow for selective recognition of cellular receptors and thus, selective target cell specificity. Through studies with cellular inhibitors, we have identified an additional novel function for this region in modulating responses of these toxin proteins to changes in pH during intoxication and delivery of the catalytic cargo domain into the cytosol.
    Toxins 06/2013; 5(6):1167-79. DOI:10.3390/toxins5061167 · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delivering therapeutic cargos to specific cell types in vivo poses many technical challenges. There is currently a plethora of drug leads and therapies against numerous diseases, ranging from small molecule compounds to nucleic acids to peptides to proteins with varying binding or enzymatic functions. Many of these candidate therapies have documented potential for mitigating or reversing disease symptoms, if only a means for gaining access to the intracellular target were available. Recent advances in our understanding of the biology of cellular uptake and transport processes and the mode of action of bacterial protein toxins have accelerated the development of toxin-based cargo-delivery vehicle platforms. This review provides an updated survey of the status of available platforms for targeted delivery of therapeutic cargos, outlining various strategies that have been used to deliver different types of cargo into cells. Particular emphasis is placed on the application of toxin-based approaches, examining critical issues that have hampered realization of post-intoxication antitoxins against botulism.
    Journal of Applied Statistics 10/2014; 14(18). DOI:10.2174/1568026614666141022094517 · 0.42 Impact Factor
Show more