Article

Gene expression networks in COPD: microRNA and mRNA regulation.

Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
Thorax (Impact Factor: 8.38). 09/2011; 67(2):122-31. DOI:10.1136/thoraxjnl-2011-200089
Source: PubMed

ABSTRACT The mechanisms underlying chronic obstructive pulmonary disease (COPD) remain unclear. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that modulate the levels of specific genes and proteins. Identifying expression patterns of miRNAs in COPD may enhance our understanding of the mechanisms of disease. A study was undertaken to determine if miRNAs are differentially expressed in the lungs of smokers with and without COPD. miRNA and mRNA expression were compared to enrich for biological networks relevant to the pathogenesis of COPD.
Lung tissue from smokers with no evidence of obstructive lung disease (n=9) and smokers with COPD (n=26) was examined for miRNA and mRNA expression followed by validation. We then examined both miRNA and mRNA expression to enrich for relevant biological pathways.
70 miRNAs and 2667 mRNAs were differentially expressed between lung tissue from subjects with COPD and smokers without COPD. miRNA and mRNA expression profiles enriched for biological pathways that may be relevant to the pathogenesis of COPD including the transforming growth factor β, Wnt and focal adhesion pathways. miR-223 and miR-1274a were the most affected miRNAs in subjects with COPD compared with smokers without obstruction. miR-15b was increased in COPD samples compared with smokers without obstruction and localised to both areas of emphysema and fibrosis. miR-15b was differentially expressed within GOLD classes of COPD. Expression of SMAD7, which was validated as a target for miR-15b, was decreased in bronchial epithelial cells in COPD.
miRNA and mRNA are differentially expressed in individuals with COPD compared with smokers without obstruction. Investigating these relationships may further our understanding of the mechanisms of disease.

1 0
 · 
1 Bookmark
 · 
110 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by varying degrees of emphysematous lung destruction and small airway disease, each with distinct effects on clinical outcomes. There is little known about how microRNAs contribute specifically to the emphysema phenotype. We examined how genome-wide microRNA expression is altered with regional emphysema severity and how these microRNAs regulate disease-associated gene expression networks. We profiled microRNAs in different regions of the lung with varying degrees of emphysema from 6 smokers with COPD and 2 controls (8 regions x 8 lungs = 64 samples). Regional emphysema severity was quantified by mean linear intercept. Whole genome microRNA and gene expression data was integrated in the same samples to build co-expression networks. Candidate microRNA were perturbed in human lung fibroblasts in order to validate these networks. The expression levels of 63 microRNAs (p < 0.05) were altered with regional emphysema. A subset, including miR-638, miR-30c, and miR-181d, had expression levels that were associated with those of their predicted mRNA targets. Genes correlated with these microRNAs were enriched in pathways associated with emphysema pathophysiology (e.g. oxidative stress and accelerated aging). Inhibition of miR-638 expression in lung fibroblasts led to modulation of these same emphysema-related pathways. Gene targets of miR-638 in these pathways were amongst those negatively correlated with miR-638 expression in emphysema. Our findings demonstrate that microRNAs are altered with regional emphysema severity and modulate disease-associated gene expression networks. Furthermore, miR-638 may regulate gene expression pathways related to the oxidative stress response and aging in emphysematous lung tissue and lung fibroblasts.
    Genome Medicine 12/2013; 5(12):114. · 3.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: MicroRNAs (MiRNA) are small non-coding RNAs that regulate gene expression. The aim of this study was to identify miRNAs differentially expressed between mild and moderately emphysematous lung, as well as their functional target mRNAs. Resected lung from patients with COPD undergoing lung cancer surgery was profiled using miRNA (Agilent Human miRNA profiler G4470 V1.01) and mRNA (OperonV2.0) microarrays. Cells of lung origin (BEAS-2B and HFL1) were profiled using mRNA microarrays (Illumina HumanHT-12 V3) after in vitro manipulation. COPD patients had mean (SD) age 68 (6) years, FEV1 72 (17)% predicted and gas transfer (KCO) 70 (10)% predicted. Five miRNAs (miR-34c, miR-34b, miR-149, miR-133a and miR-133b) were significantly down-regulated in lung from patients with moderate compared to mild emphysema as defined by gas transfer (p < 0.01). In vitro upregulation of miR-34c in respiratory cells led to down-regulation of predicted target mRNAs, including SERPINE1, MAP4K4, ZNF3, ALDOA and HNF4A. The fold change in ex-vivo expression of all five predicted target genes inversely correlated with that of miR-34c in emphysematous lung, but this relationship was strongest for SERPINE1 (p = 0.05). Differences in miRNA expression are associated with emphysema severity in COPD patients. MiR-34c modulates expression of its putative target gene, SERPINE1, in vitro in respiratory cell lines and ex vivo in emphysematous lung tissue.
    BMC Genomics 01/2014; 15(1):88. · 4.40 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The recognition of α-1-antitrypsin deficiency, its function, and its role in predisposition to the development of severe emphysema was a watershed in our understanding of the pathophysiology of the condition. This led to the concept and development of intravenous replacement therapy used worldwide to protect against lung damage induced by neutrophil elastase. Nevertheless, much remained unknown about the deficiency and its impact, although in recent years the genetic and clinical variations in manifestation have provided new insights into assessing impact, efficacy of therapy, and development of new therapeutic strategies, including gene therapy, and outcome measures, such as biomarkers and computed tomography. The current article reviews this progress over the preceding 50 years.
    Trends in Molecular Medicine 12/2013; · 9.57 Impact Factor