Article

Comparison of the INNO-LiPA and PapType assays for detection of human papillomavirus in archival vulva dysplasia and/or neoplasia tissue biopsy specimens.

Department of Microbiology and Infectious Diseases, The Royal Women's Hospital, Victoria 3052, Australia.
Journal of clinical microbiology (Impact Factor: 4.16). 09/2011; 49(11):3980-2. DOI: 10.1128/JCM.00516-11
Source: PubMed

ABSTRACT INNO-LiPA and PapType human papillomavirus (HPV) genotyping assays were compared for detection of HPV genotypes on archival vulvar tissue. The INNO-LiPA assay detected 49 HPV-16 infections, compared with 47 detected by the PapType assay. The INNO-LiPA assay detected amplifiable DNA in 59 (91%) biopsy specimens, compared with 57 (88%) specimens for which amplifiable DNA was detected by the PapType assay. The two genotyping assays were highly comparable.

0 Bookmarks
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. We investigate the prevalence of human papillomavirus (HPV) in oesophageal squamous cell carcinoma (OSCC) tissues compared to oesophageal tissue from healthy controls, in an Australian cohort. Methods. We conducted a hospital-based case-control study of 99 patients with OSCC and 100 healthy controls to examine the presence of HPV DNA. Paraffin tissues were tested using the PapType high-risk HPV detection and genotyping kit and with INNO-LiPA HPV Genotyping Extra. The biopsy samples were tested for HPV using a PCR-ELISA method based on the L1 consensus primer set PGMY09-PGMY11. Results. HPV DNA of the oncogenic genotype 16 was detected in 1/99 case specimens, a rate of 1010 per 100,000 (95% CI: 30-5500). All control specimens were negative for HPV. Significantly higher rates of smoking, other aerodigestive cancers, and mortality were seen among cases than controls. A pooled analysis of this study and the only other Australian case-control study found that 9/321 cases and 0/155 controls were positive for HPV. The pooled odds ratio for HPV being a risk factor for OSCC was 9.35 (95% CI: 0.47-190.33). Conclusion. Our results suggest that in this multifactorial cancer HPV may be an additional risk factor; although a larger, better powered study is needed.
    Journal of oncology. 01/2014; 2014:236482.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background HR HPV genotypes when assayed collectively, achieve high sensitivity but low specificity for the prediction of CIN2+. Knowledge of the specific genotypes in an infection may facilitate the use of HR HPV detection in routine clinical practice. Objectives To compare the rate of HR HPV detection and the accuracy of CIN2+ prediction between PapType test (Genera Biosystems) and other commercially available HR HPV assays, and to examine the value of full HPV genotyping. Study design. PreservCyt samples from 1099 women referred for abnormal cervical cytology were used. CIN2+ was chosen as the primary end-point but CIN3+ was also evaluated. A hierarchy of HR HPV genotypes was created using PPV and this was used to create 3 groups of genotypes with potentially different management. Results The PapType assay has a specificity of 22.4% and a sensitivity of 94.6% for CIN2+ prediction. Classification into Groups A (HPV33 and HPV16, very highly predictive), B (HPV31, 18, 52, 35, 58, 51 highly predictive) and C (HPV68, 45, 39, 66, 56, 59, intermediate predictive) could double the specificity (44.5%) but only slightly reduce the sensitivity for CIN2+ (91.5%) and CIN3+ (94.0%). Conclusions The PapType assay is a simple, reproducible and effective test for HR HPV detection and genotyping. HPV 33 was found to have a very high PPV and should therefore be managed as for HPV16.
    Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology 01/2014; · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic variation of 49 human papillomavirus (HPV) 6 and 22 HPV11 isolates from recurrent respiratory papillomatosis (RRP) (n = 17), genital warts (n = 43), anal cancer (n = 6) and cervical neoplasia cells (n = 5), was determined by sequencing the long control region (LCR) and the E6 and E7 genes. Comparative analysis of genetic variability was examined to determine whether different disease states resulting from HPV6 or HPV11 infection cluster into distinct variant groups. Sequence variation analysis of HPV6 revealed that isolates cluster into variants within previously described HPV6 lineages, with the majority (65%) clustering to HPV6 sublineage B1 across the three genomic regions examined. Overall 72 HPV6 and 25 HPV11 single nucleotide variations, insertions and deletions were observed within samples examined. In addition, missense alterations were observed in the E6/E7 genes for 6 HPV6 and 5 HPV11 variants. No nucleotide variations were identified in any isolates at the four E2 binding sites for HPV6 or HPV11, nor were any isolates found to be identical to the HPV6 lineage A or HPV11 sublineage A1 reference genomes. Overall, a high degree of sequence conservation was observed between isolates across each of the regions investigated for both HPV6 and HPV11. Genetic variants identified a slight association with HPV6 and anogenital lesions (p = 0.04). This study provides important information on the genetic diversity of circulating HPV 6 and HPV11 variants within the Australian population and supports the observation that the majority of HPV6 isolates cluster to the HPV6 sublineage B1 with anogenital lesions demonstrating an association with this sublineage (p = 0.02). Comparative analysis of Australian isolates for both HPV6 and HPV11 to those from other geographical regions based on the LCR revealed a high degree of sequence similarity throughout the world, confirming previous observations that there are no geographically specific variants for these HPV types.
    PLoS ONE 01/2013; 8(5):e63892. · 3.73 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
May 21, 2014