Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss.

Departamento de Biociências, Curso de Educação Física - Modalidade Saúde, Universidade Federal de São Paulo, SP, Brazil.
Journal of Cellular Physiology (Impact Factor: 3.87). 09/2011; 227(7):2917-26. DOI: 10.1002/jcp.23037
Source: PubMed

ABSTRACT Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3β) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1α association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3β phosphorylation levels and glycogen content at 24 h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Adiponectin is an adipocyte-derived abundant plasma protein, also called Acrp30 (adipocyte complement-related protein), adipoQ, ApM1 (AdiPose Most abundant Gene transcript 1), or GBP28 (gelatin-binding protein-28). Insulin resistance is a primary contributing factor in the pathogenesis of type 2 diabetes. Adiponectin binds to adiponectin receptors AdipoR1 and AdipoR2, and exerts antidiabetic effects via activation of AMPK and PPAR-α pathways, respectively. In the same sense chronic exercise has been showed to induce numerous metabolic factors that can improve insulin resistance. It has been reported that physical exercise training increases adiponectin receptors, which may mediate the improvement of insulin resistance in response to exercise, which is the focus of the present review.
    Hormone and Metabolic Research 08/2014; 46(9):603-8. DOI:10.1055/s-0034-1377026 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies on normoglycemic ovariectomized Sprague-Dawley rats have provided insights about the effects of estrogen deficiency on insulin resistance in lean individuals. It is not completely clear if subjects with pre-established obesity and insulin resistance are at greater risk of developing type 2 diabetes when ovarian estrogens are no longer secreted, and if physical activity can protect against this susceptibility. Contrasting with their male counterparts, obese and insulin resistant female ZDF (Zucker diabetic fatty) rats do not become hyperglycemic when fed a standard diet. The aim of the study was to evaluate the hypothesis that withdrawal of ovarian estrogens in insulin resistant female ZDF rats would trigger overt hyperglycemia, provided they remain physically inactive. Female ZDF rats underwent either an ovariectomy (OVX) or a simulated surgery (SHAM). Thereafter, OVX rats engaged either in voluntary wheel cage running (OVX-Active), or like the Sham rats, remained sedentary (OVX-Sed) for 6 weeks. Fasting glycemia, insulinemia, and glucose tolerance were not altered in OVX-Sed as compared to SHAM-Sed rats. However, OVX-Sed rats showed altered liver triglyceride and glycogen contents, increased pancreatic insulin content and reduced insulin-stimulated muscle pAKT as compared to SHAM-Sed rats. Physical activity in OVX rats lowered fasting glucose and insulin levels, improved glucose tolerance and insulin-stimulated skeletal muscle glucose uptake as compared to OVX-Sed rats. OVX-induced alterations in pancreatic insulin content and liver glycogen and triglyceride contents were significantly improved by physical activity. Loss of ovarian estrogens did not cause overt hyperglycemia in insulin-resistant female ZDF rats. Physical activity improved glucose homeostasis despite estrogen deficiency.
    Hormone and Metabolic Research 07/2014; 46(11). DOI:10.1055/s-0034-1381980 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To review the responses of the liver to acute and chronic physical activity and to summarize relationships between physical activity and liver health. A systematic search of HealthStar/Ovid from 1975 through June of 2013, supplemented by articles from other sources. 351 of 8,010 articles identified by HealthStar/Ovid were supplemented by 92 other papers; after focussing, the review was reduced to 435 citations. Prolonged acute exercise reduces hepatic blood flow, stimulating hepatic glycogenolysis, gluconeogenesis and synthesis of some proteins; however, lipid metabolism shows little change. Glutathione depletion suggests oxidative stress. Enzymes affecting carbohydrate metabolism are up-regulated, and lipogenic enzymes are down-regulated. The main triggers are humoral, but hepatic afferent nerves, cytokines, reactive oxygen species, and changes in hepatic blood flow may all play some role. Regular aerobic exercise training improves blood glucose control during exercise by increasing glycogen stores and up-regulating enzymes involved in gluconeogenesis and carbohydrate metabolism. Resistance to oxidant stress is generally increased by training. Lipogenic enzymes are down-regulated, and lipid metabolism is augmented. Modulations of insulin, insulin-like growth factor, glucagon and interleukin-6 may trigger the adaptive responses to training. Cross-sectional and longitudinal studies show that regular exercise can reduce hepatic fat, but the effect on circulating aminotransferases is unclear and the modality and dose of physical activity optimizing health benefits need clarification. Regular moderate physical activity enhances liver health. Adverse functional changes can develop if habitual activity is inadequate, and extremely prolonged competitive exercise may also be harmful, particularly under harsh environmental conditions.
    Arbeitsphysiologie 11/2014; 115(1). DOI:10.1007/s00421-014-3031-6 · 2.30 Impact Factor