Safety of magnetic resonance imaging in patients with permanent pacemakers: A collaborative clinical approach

Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.
Journal of Interventional Cardiac Electrophysiology (Impact Factor: 1.58). 09/2011; 33(1):59-67. DOI: 10.1007/s10840-011-9615-8
Source: PubMed


This study aimed to characterize the interactions of pacemakers with magnetic resonance imaging (MRI) and to identify device characteristics that could predict adverse interactions.
The safety of MRI in patients with indwelling pacemaker systems remains uncertain. Previous studies demonstrated safety in most patients, but unpredictable, potentially concerning changes in pacemaker behavior have occurred.
We prospectively studied patients with pacemaker devices in situ who were not pacemaker dependent and in whom MRI was essential for adequate diagnosis and treatment. All patients were monitored by electrocardiography and pulse oximetry during scanning; devices were interrogated and cardiac enzymes were measured before and after scanning.
Of 32 patients studied (46 MRI examinations), 28 patients had a dual-chamber system and one had a biventricular device. Regions scanned were the head and spine. Devices were reprogrammed to asynchronous pacing or sense-only mode in all except six patients before MRI. During six scanning episodes (five patients), "power-on" resetting of the device was noted. Magnet-mode pacing was noted during four episodes (three patients). Occasional premature ventricular contractions were noted in one patient. No significant changes in battery voltage, sensed P wave and R wave, pacing thresholds, lead impedance, or cardiac enzymes were noted immediately after MRI or at 1-month follow-up.
Overall, no significant changes were seen in pacemaker device function, and no adverse clinical events were observed. A minority of patients with older devices had unpredictable changes in device behavior, which stresses the need for close monitoring during and careful device interrogation after scanning.

1 Follower
14 Reads
  • Source
    • "According to our and others findings, the data on MRI are heterogeneous, and a definitive statement cannot be made about imaging patients with pacemakers. In particular in patients with older devices, unpredictable changes in device behavior can occur [37], which stresses the need for close monitoring during, and careful device interrogation after scanning. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Conventional cardiac pacemakers are still often regarded as a contraindication to magnetic resonance imaging (MRI). We conducted this study to support the hypothesis that it is safe to scan patients with cardiac pacemakers in a 1.5 Tesla MRI, if close supervision and monitoring as well as adequate pre- and postscan programming is provided. Methods We followed up 356 patients (age 61.3 ± 9.1 yrs., 229 men) with single (n = 132) or dual chamber (n = 224) cardiac pacemakers and urgent indication for a cranial MRI for 12 months. The scans were performed at 1.5T. During the scan patients were monitored with a 3-lead ECG and pulse oximetry. Prior to the scan pacemakers were programmed according to our own protocol. Results All 356 scans were completed without complications. No arrhythmias were induced, programmed parameters remained unchanged. No pacemaker dysfunction was identified. Follow-up examinations were performed immediately, 2 weeks, 2, 6, and 12 months after the scan. There was no significant change of pacing capture threshold (ventricular 0.9 ± 0.4 V@0.4 ms, atrial 0.9 ± 0.3 V@0.4 ms) immediately (ventricular 1.0 ± 0.3 V@0.4 ms, atrial 0.9 ± 0.4 V@0.4 ms) or at 12 months follow-up examinations (ventricular 0.9 ± 0.2 V@0.4 ms, atrial 0.9 ± 0.3 V@0.4 ms). There was no significant change in sensing threshold (8.0 ± 4.0 mV vs. 8.1 ± 4.2 mV ventricular lead, 2.0 ± 0.9 mV vs. 2.1 ± 1.0 mV atrial lead) or lead impedance (ventricular 584 ± 179 Ω vs. 578 ± 188 Ω, atrial 534 ± 176 Ω vs. 532 ± 169 Ω) after 12 months. Conclusions This supports the evidence that patients with conventional pacemakers can safely undergo cranial MRI in a 1.5T system with suitable preparation, supervision and precautions. Long term follow-up did not reveal significant changes in pacing capture nor sensing threshold.
    Journal of Cardiovascular Magnetic Resonance 06/2014; 16(1):39. DOI:10.1186/1532-429X-16-39 · 4.56 Impact Factor
  • Source
    • "Despite all safety concerns, many pacemaker patients without an acceptable alternative imaging modality have undergone MRI uneventfully.31–45 A recent review of 15 human studies involving 1,419 MRI scans (mostly nonthoracic) reported no serious adverse events, although 65% of these were performed in patients with MRI-conditional devices.30 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Use of both magnetic resonance imaging (MRI) and pacing devices has undergone remarkable growth in recent years, and it is estimated that the majority of patients with pacemakers will need an MRI during their lifetime. These investigations will generally be denied due to the potentially dangerous interactions between cardiac devices and the magnetic fields and radio frequency energy used in MRI. Despite the increasing reports of uneventful scanning in selected patients with conventional pacemakers under close surveillance, MRI is still contraindicated in those circumstances and cannot be considered a routine procedure. These limitations prompted a series of modifications in generator and lead engineering, designed to minimize interactions that could compromise device function and patient safety. The resulting MRI-conditional pacemakers were first introduced in 2008 and the clinical experience gathered so far supports their safety in the MRI environment if certain conditions are fulfilled. With this technology, new questions and controversies arise regarding patient selection, clinical impact, and cost-effectiveness. In this review, we discuss the potential risks of MRI in patients with electronic cardiac devices and present updated information regarding the features of MRI-conditional pacemakers and the clinical experience with currently available models. Finally, we provide some guidance on how to scan patients who have these devices and discuss future directions in the field.
    Medical Devices: Evidence and Research 05/2014; 7(1):115-124. DOI:10.2147/MDER.S44063
  • Source
    • "Temperature rises have been measured both in vitro and in an animal model, however other experiments have been more reassuring at scan settings in clinical use.[4,5,7,8] Significant heating at the lead tip would be expected to be accompanied by cardiac troponin isoform release and an increase in pace capture threshold, however this combination has been reported in only 1 of a total of 251 MRI scans in which cardiac biomarkers and threshold were prospectively measured.[4,10-12] Nonetheless, >1V increases in threshold have been reported in some series,[9,10] transient loss of capture in an animal model[5], and loss of capture with high impedance, troponin elevation, and delayed threshold increase have all been reported in CIED patients undergoing MRI.[13,14] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pacemakers and other cardiac implantable electronic devices (CIEDs) have long been considered an absolute contraindication to magnetic resonance imaging (MRI), a crucial and growing imaging modality. In the last 20 years, protocols have been developed to allow MR scanning of CIED patients with a low complication rate. However, this practice has remained limited to a relatively small number of centers, and many pacemaker patients continue to be denied access to clinically indicated imaging. The introduction of MRI conditional pacemakers has provided a widely applicable and satisfactory solution to this problem. Here, the interactions of pacemakers with the MR environment, the results of MR scanning in patients with conventional CIEDs, the development and clinical experience with MRI conditional devices, and future directions are reviewed.
    Indian pacing and electrophysiology journal 09/2012; 12(5):204-12.
Show more

Similar Publications