Article

Overview of the Matrisome--An Inventory of Extracellular Matrix Constituents and Functions

Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Cold Spring Harbor perspectives in biology (Impact Factor: 8.23). 09/2011; 4(1):a004903. DOI: 10.1101/cshperspect.a004903
Source: PubMed

ABSTRACT Completion of genome sequences for many organisms allows a reasonably complete definition of the complement of extracellular matrix (ECM) proteins. In mammals this "core matrisome" comprises ∼300 proteins. In addition there are large numbers of ECM-modifying enzymes, ECM-binding growth factors, and other ECM-associated proteins. These different categories of ECM and ECM-associated proteins cooperate to assemble and remodel extracellular matrices and bind to cells through ECM receptors. Together with receptors for ECM-bound growth factors, they provide multiple inputs into cells to control survival, proliferation, differentiation, shape, polarity, and motility of cells. The evolution of ECM proteins was key in the transition to multicellularity, the arrangement of cells into tissue layers, and the elaboration of novel structures during vertebrate evolution. This key role of ECM is reflected in the diversity of ECM proteins and the modular domain structures of ECM proteins both allow their multiple interactions and, during evolution, development of novel protein architectures.

Download full-text

Full-text

Available from: Alexandra Naba, Jun 30, 2015
0 Followers
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Throughout the body, the extracellular matrix (ECM) provides structure and organization to tissues and also helps regulate cell migration and intercellular communication. In the injured spinal cord (or brain), changes in the composition and structure of the ECM undoubtedly contribute to regeneration failure. Less appreciated is how the native and injured ECM influences intraspinal inflammation and, conversely, how neuroinflammation affects the synthesis and deposition of ECM after CNS injury. In all tissues, inflammation can be initiated and propagated by ECM disruption. Molecules of ECM newly liberated by injury or inflammation include hyaluronan fragments, tenascins, and sulfated proteoglycans. These act as “damage-associated molecular patterns” or “alarmins”, i.e., endogenous proteins that trigger and subsequently amplify inflammation. Activated inflammatory cells, in turn, further damage the ECM by releasing degradative enzymes including matrix metalloproteinases (MMPs). After spinal cord injury (SCI), destabilization or alteration of the structural and chemical compositions of the ECM affects migration, communication, and survival of all cells – neural and non-neural – that are critical for spinal cord repair. By stabilizing ECM structure or modifying their ability to trigger the degradative effects of inflammation, it may be possible to create an environment that is more conducive to tissue repair and axon plasticity after SCI.
    Experimental Neurology 08/2014; 258. DOI:10.1016/j.expneurol.2013.11.020 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.
    05/2013; 2013:352370. DOI:10.1155/2013/352370
  • Source