Article

Patterns of histone H3 lysine 27 monomethylation and erythroid cell type-specific gene expression.

Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2011; 286(45):39457-65. DOI: 10.1074/jbc.M111.243006
Source: PubMed

ABSTRACT Post-translational histone modifications, acting alone or in a context-dependent manner, influence numerous cellular processes via their regulation of gene expression. Monomethylation of histone H3 lysine 27 (K27me1) is a poorly understood histone modification. Some reports describe depletion of K27Me1 at promoters and transcription start sites (TSS), implying its depletion at TSS is necessary for active transcription, while others have associated enrichment of H3K27me1 at TSS with increased levels of mRNA expression. Tissue- and gene-specific patterns of H3K27me1 enrichment and their correlation with gene expression were determined via chromatin immunoprecipitation on chip microarray (ChIP-chip) and human mRNA expression array analyses. Results from erythroid cells were compared with those in neural and muscle cells. H3K27me1 enrichment varied depending on levels of cell-type specific gene expression, with highest enrichment over transcriptionally active genes. Over individual genes, the highest levels of H3K27me1 enrichment were found over the gene bodies of highly expressed genes. In contrast to H3K4me3, which was highly enriched at the TSS of actively transcribing genes, H3K27me1 was selectively depleted at the TSS of actively transcribed genes. There was markedly decreased to no H3K27me1 enrichment in genes with low expression. At some locations, H3K27 monomethylation was also found to be associated with chromatin signatures of gene enhancers.

0 Bookmarks
 · 
143 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system. Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomagenesis. OPCs can give rise to gliomas, with signaling pathways associated with NSCs also playing key roles during OPC lineage development. Gliomas can also undergo a switch from progenitor- to stem-like phenotype after therapy, consistent with an OPC-origin even for stem-like gliomas. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues.
    Advances in Cancer Research 01/2014; 121:1-65. · 4.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM) is the most aggressive primary brain tumor in human. Recent studies on high-grade pediatric GBM have identified two recurrent mutations (K27M and G34R/V) in genes encoding histone H3 (H3F3A for H3.3 and HIST1H3B for H3.1). ( 1) (,) ( 2) The two histone H3 mutations are mutually exclusive and give rise to tumors in different brain compartments. ( 3) Recently, we ( 4) and others ( 5) have shown that the histone H3 K27M mutation specifically altered the di- and tri-methylation of endogenous histone H3 at Lys27. Genome-wide studies using ChIP-seq on H3.3K27M patient samples indicate a global reduction of H3K27me3 on chromatin. Remarkably, we also found a dramatic enrichment of H3K27me3 and EZH2 (the catalytic subunit H3K27 methyltransferase) at hundreds of gene loci in H3.3K27M patient cells. Here, we discuss potential mechanisms whereby H3K27me3 is enriched at chromatin loci in cells expressing the H3.3K27M mutation and report effects of Lys-to-Met mutations of other well-studied lysine residues of histone H3.1/H3.3 and H4 on the corresponding endogenous lysine methylation. We suggest that mutation(s) on histones may be found in a variety of human diseases, and the expression of mutant histones may help to address the function of histone lysine methylation and possibly other modifications in mammalian cells.
    Cell cycle (Georgetown, Tex.) 07/2013; 12(16). · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A large, and still rapidly expanding literature on epigenetic regulation in the nervous system has provided fundamental insights into the dynamic regulation of DNA methylation and post-translational histone modifications in the context of neuronal plasticity in health and disease. Remarkably, however, very little is known about the potential role of chromatin-bound RNAs, including many long non-coding transcripts and various types of small RNAs. Here, we provide an overview on RNA-mediated regulation of chromatin structure and function, with focus on histone lysine methylation and psychiatric disease. Examples of recently discovered chromatin-bound long non-coding RNAs important for neuronal health and function include the Brain-derived Neurotrophic Factor antisense transcript (Bdnf-AS) which regulates expression of the corresponding sense transcript, and LOC389023 which is associated with human-specific histone methylation signatures at the chromosome 2q14.1 neurodevelopmental risk locus by regulating expression of DPP10, an auxillary subunit for voltage-gated K(+) channels. We predict that the exploration of chromatin-bound RNA will significantly advance our current knowledge base in neuroepigenetics and biological psychiatry.
    Neuroscience 07/2013; · 3.33 Impact Factor