Article

Role of epimorphin in bile duct formation of rat liver epithelial stem-like cells: involvement of small G protein RhoA and C/EBPβ.

Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, China.
Journal of Cellular Physiology (Impact Factor: 4.22). 11/2011; 226(11):2807-16. DOI: 10.1002/jcp.22625
Source: PubMed

ABSTRACT Epimorphin/syntaxin 2 is a high conserved and very abundant protein involved in epithelial morphogenesis in various organs. We have shown recently that epimorphin (EPM), a protein exclusively expressed on the surface of hepatic stellate cells and myofibroblasts of the liver, induces bile duct formation of hepatic stem-like cells (WB-F344 cells) in a putative biophysical way. Therefore, the aim of this study was to present some of the molecular mechanisms by which EPM mediates bile duct formation. We established a biliary differentiation model by co-culture of EPM-overexpressed mesenchymal cells (PT67(EPM)) with WB-F344 cells. Here, we showed that EPM could promote WB-F344 cells differentiation into bile duct-like structures. Biliary differentiation markers were also elevated by EPM including Yp, Cx43, aquaporin-1, CK19, and gamma glutamyl transpeptidase (GGT). Moreover, the signaling pathway of EPM was analyzed by focal adhesion kinase (FAK), extracellular regulated kinase 1/2 (ERK1/2), and RhoA Western blot. Also, a dominant negative (DN) RhoA-WB-F344 cell line (WB(RhoA-DN)) was constructed. We found that the levels of phosphorylation (p) of FAK and ERK1/2 were up-regulated by EPM. Most importantly, we also showed that RhoA is necessary for EPM-induced activation of FAK and ERK1/2 and bile duct formation. In addition, a dual luciferase-reporter assay and CHIP assay was performed to reveal that EPM regulates GGT IV and GGT V expression differentially, possibly mediated by C/EBPβ. Taken together, these data demonstrated that EPM regulates bile duct formation of WB-F344 cells through effects on RhoA and C/EBPβ, implicating a dual aspect of this morphoregulator in bile duct epithelial morphogenesis.

0 Bookmarks
 · 
276 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Except for the most organized mature hepatocytes, liver stem/progenitor cells (LSPCs) can differentiate into many other types of cells in the liver including cholangiocytes. In addition, LSPCs are demonstrated to be able to give birth to other kinds of extra-hepatic cell types such as insulin-producing cells. Even more, under some bad conditions, these LSPCs could generate liver cancer stem like cells (LCSCs) through malignant transformation. In this review, we mainly concentrate on the molecular mechanisms for controlling cell fates of LSPCs, especially differentiation of cholangiocytes, insulin-producing cells and LCSCs. First of all, to certificate the cell fates of LSPCs, the following three features need to be taken into account to perform accurate phenotyping: (1) morphological properties; (2) specific markers; and (3) functional assessment including in vivo transplantation. Secondly, to promote LSPCs differentiation, systematical attention should be paid to inductive materials (such as growth factors and chemical stimulators), progressive materials including intracellular and extracellular signaling pathways, and implementary materials (such as liver enriched transcriptive factors). Accordingly, some recommendations were proposed to standardize, optimize, and enrich the effective production of cholangiocyte-like cells out of LSPCs. At the end, the potential regulating mechanisms for generation of cholangiocytes by LSPCs were carefully analyzed. The differentiation of LSPCs is a gradually progressing process, which consists of three main steps: initiation, progression and accomplishment. It's the unbalanced distribution of affecting materials in each step decides the cell fates of LSPCs.
    World Journal of Gastroenterology 11/2013; 19(41):7032-7041. · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activation of hepatic progenitor cells (HPCs) is commonly observed in chronic liver disease and Wnt/β-catenin signaling plays a crucial role in the expansion of HPCs. However, the molecular mechanisms that regulate the activation of Wnt/β-catenin signaling in the liver, especially in HPCs, remain largely elusive. Here, we reported that ectopic expression of Smad6 suppressed the proliferation and self-renewal of WB-F344 cells, a HPC cell line. Mechanistically, we found that Smad6 inhibited Wnt/β-catenin signaling through promoting the interaction of C-terminal binding protein (CtBP) with β-catenin/T-cell factor (TCF) complex to inhibit β-catenin mediated transcriptional activation in WB-F344 cells. We used siRNA targeting β-catenin to demonstrate that Wnt/β-catenin signaling was required for the proliferation and self-renewal of HPCs. Taken together, these results suggest that Smad6 is a regulatory molecule which regulates the proliferation, self-renewal and Wnt/β-catenin signaling in HPCs. J. Cell. Physiol. 229: 651-660, 2014. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 05/2014; 229(5):651-60. · 4.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies have shown that the expression of CD133, leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5), and ATP binding cassette (ABC)G2 proteins is associated with malignancy and poor prognosis in colon cancer. However, molecular regulation mechanism of the three proteins has not been elucidated. Here, we report that microRNA-142-3p (miR-142-3p) inhibits the expression of CD133, Lgr5, and ABCG2 in colon cancer cells by binding to both the 3'-untranslated region and the coding sequences of the three genes. The miR-142-3p was markedly decreased in colon cancer specimens, in which it was negatively correlated with the expression of CD133, Lgr5, and ABCG2. Reduction of miR-142-3p corresponds to poor differentiation and bigger tumor size in colon cancers. Moreover, miR-142-3p levels were reduced in cells that formed spheres compared to cells that were cultured in regular media. Transfection of miR-142-3p mimics in colon cancer cells downregulated cyclin D1 expression, induced G1 phase cell cycle arrest, and elevated the sensitivity of the cells to 5-fluorouracil. Furthermore, OCT4 suppressed miR-142-3p, and hypomethylation of the OCT4 promoter was associated with a reduction in miR-142-3p. Finally, the miR-142-3p inhibited the growth of colon cancer cells in vivo, which was accompanied by the downregulation of CD133, Lgr5, and ABCG2 in tumor tissues. Our results elucidate a novel regulation pathway in colon cancer cells and suggest a potential therapeutic approach for colon cancer therapy.
    Journal of Molecular Medicine 04/2013; · 4.77 Impact Factor