Article

Humanin Protects Cortical Neurons from Ischemia and Reperfusion Injury by the Increased Activity of Superoxide Dismutase

Department of Physiology, Guangzhou Medical School, Guangzhou 510182, People's Republic of China.
Neurochemical Research (Impact Factor: 2.55). 09/2011; 37(1):153-60. DOI: 10.1007/s11064-011-0593-0
Source: PubMed

ABSTRACT The neuroprotective effects of superoxide dismutase (SOD) against hypoxia/reperfusion (I/R) injury and of humanin (HN) against toxicity by familial amyotrophic lateral sclerosis (ALS)-related mutant SOD led us to hypothesize that HN might have a role to increase the activity of SOD, which might be involved in the protective effects of HN on neuron against Alzheimer's disease-unrelated neurotoxicities. In the present study, we found that 4 h ischemia and 24 h reperfusion induced a significant increase in lactate dehydrogenase (LDH) release, malondialdehyde (MDA) formation and the number of karyopyknotic nuclei (4',6-diamidino-2-phenylindole dihydrochloride nuclear dyeing) and a decrease in the number of Calcein-AM-positive living cells and cell viability. Pretreatment of the cells with HN led to a significant decrease in LDH release, MDA formation and the number of karyopyknotic nuclei, and an increase in the number of Calcein-AM-positive living cells and cell viability in neurons treated with I/R. We also found a significant decrease in SOD activity in neurons treated with I/R only, while pre-treatment with HN before I/R induced a significant increase in the activity of SOD as compared with the I/R group. Our findings implied that HN protects cortical neurons from I/R injury by the increased SOD activity and that the protective effect of HN on neurons against I/R is concentration-dependent.

0 Followers
 · 
171 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Humanin is a potential therapeutic agent for Alzheimer's disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer's disease-relevant insults. Al-though effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibrillar amyloid-beta 40 disturbed cellular ho-meostasis through the cell membrane, increasing intracellular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these responses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cell membrane, and restored the disturbed cellular homeostasis, thereby exerting a neu-roprotective effect on hippocampal neurons.
    Neural Regeneration Research 09/2013; 8(27):2573-80. DOI:10.3969/j.issn.1673-5374.2013.27.009 · 0.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: [Gly14]-Humanin (HNG) is a 24-amino acid peptide which was first identified in the brains of patients diagnosed with Alzheimer's disease (AD). In this region, some neurons were protected against cell damage occurring in this disease. Further studies suggested a neuroprotective role for humanin against Aβ and some other insults. Intraventricularly administered streptozotocin (STZ) disrupts insulin signaling pathway which leads to behavioral and biochemical changes resemble to early signs of AD; therefore, STZ model has been proposed as a model for sporadic Alzheimer's disease (sAD). Regarding the reported beneficial effects of humanin in AD, this study was aimed to investigate if this peptide prevents spatial memory and hippocampal PI3/Akt signaling impairment induced by centrally injected STZ. Adult male Sprague-Dawely rats weighting 250-300 g were used, and cannuls were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3 mg/kg), and humanin (0.01, 0.05, 0.1, and 1 nmol) or saline were injected from day 4 and continued till day 14. The animal's learning and memory capability was assessed on days 15-18 using Morris water maze. After complement of behavioral studies, the hippocampi were isolated, and the level of phosphorylated Akt (pAkt) was assessed through Western blot analysis. The results showed that STZ significantly impaired spatial memory, and humanin in a wide range of doses (0.01, 0.05, 0.1, and 1 nmol) failed to restore STZ-induced deficit. It was also revealed that humanin was not efficient in restoring pAkt disruption. It seems that humanin is not capable in restoring memory deterioration that resulted from insulin signaling disruption.
    Journal of Molecular Neuroscience 03/2015; DOI:10.1007/s12031-015-0531-8 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humanin (HN) is 24-amino acid mitochondria-associated peptide. Since its initial discovery over a decade ago, a role for HN has been reported in many biological processes such as apoptosis, cell survival, substrate metabolism, inflammatory response, and response to stressors such as oxidative stress, ischemia, and starvation. HN and its potent analogs have been shown to have beneficial effects in many age-related diseases including Alzheimer's disease, stroke, diabetes, myocardial ischemia and reperfusion, atherosclerosis, amyotrophic lateral sclerosis, and certain types of cancer both in vitro and in vivo. More recently, an association between HN levels, growth hormone/insulin-like growth factor-1 (GH/IGF axis), and life span was demonstrated using various mouse models with mutations in the GH/IGF axis. The goal of this review is to summarize the current understanding of the role of HN in aging and age-related diseases.
    Frontiers in Endocrinology 12/2014; 5:210. DOI:10.3389/fendo.2014.00210