Article

The Human N-Alpha-Acetyltransferase 40 (hNaa40p/hNatD) Is Conserved from Yeast and N-Terminally Acetylates Histones H2A and H4

Ludwig-Maximilians-Universität München, Germany
PLoS ONE (Impact Factor: 3.53). 09/2011; 6(9):e24713. DOI: 10.1371/journal.pone.0024713
Source: PubMed

ABSTRACT Protein Nα-terminal acetylation (Nt-acetylation) is considered one of the most common protein modification in eukaryotes, and 80-90% of all soluble human proteins are modified in this way, with functional implications ranging from altered protein function and stability to translocation potency amongst others. Nt-acetylation is catalyzed by N-terminal acetyltransferases (NATs), and in yeast five NAT types are identified and denoted NatA-NatE. Higher eukaryotes additionally express NatF. Except for NatD, human orthologues for all yeast NATs are identified. yNatD is defined as the catalytic unit Naa40p (Nat4) which co-translationally Nt-acetylates histones H2A and H4.
In this study we identified and characterized hNaa40p/hNatD, the human orthologue of the yeast Naa40p. An in vitro proteome-derived peptide library Nt-acetylation assay indicated that recombinant hNaa40p acetylates N-termini starting with the consensus sequence Ser-Gly-Gly-Gly-Lys-, strongly resembling the N-termini of the human histones H2A and H4. This was confirmed as recombinant hNaa40p Nt-acetylated the oligopeptides derived from the N-termini of both histones. In contrast, a synthetically Nt-acetylated H4 N-terminal peptide with all lysines being non-acetylated, was not significantly acetylated by hNaa40p, indicating that hNaa40p catalyzed H4 Nα-acetylation and not H4 lysine Nε-acetylation. Also, immunoprecipitated hNaa40p specifically Nt-acetylated H4 in vitro. Heterologous expression of hNaa40p in a yeast naa40-Δ strain restored Nt-acetylation of yeast histone H4, but not H2A in vivo, probably reflecting the fact that the N-terminal sequences of human H2A and H4 are highly similar to each other and to yeast H4 while the N-terminal sequence of yeast H2A differs. Thus, Naa40p seems to have co-evolved with the human H2A sequence. Finally, a partial co-sedimentation with ribosomes indicates that hNaa40p co-translationally acetylates H2A and H4. Combined, our results strongly suggest that human Naa40p/NatD is conserved from yeast. Thus, the NATs of all classes of N-terminally acetylated proteins in humans now appear to be accounted for.

Download full-text

Full-text

Available from: Petra Van Damme, Aug 11, 2015
0 Followers
 · 
243 Views
  • Source
    • "When the initiator methionine is followed by Asp, Glu, or Gln, it can be acetylated by NatB. NatC acetylates initiator methionines followed by hydrophobic amino acids (Leu, Ile, Tyr, or Phe), NatD acetylates the N-termini of the histones H2A and H4, and NatE acetylates proteins where the initiator methionine is followed by Leu, Ala, Lys, or Met (Polevoda et al. , 2009 ; Hole et al. , 2011 ). Finally, the recently discovered NatF, which is specifi c for higher eukaryotes, acetylates N-termini mainly starting with Met followed by Lys, Leu, Ile, Trp, or Phe (Van Damme et al. , 2011c ). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein N-terminal acetylation by Nα-acetyltransferases (NATs) is an omnipresent protein modification that affects a large number of proteins. The exact biological role of N-terminal acetylation has, however, remained enigmatic for the overall majority of affected proteins, and only for a rather small number of proteins, N-terminal acetylation was linked to various protein features including stability, localization, and interactions. This minireview tries to summarize the recent progress made in understanding the functionality of N-terminal protein acetylation and also focuses on noncanonical functions of the NATs subunits.
    Biological Chemistry 03/2012; 393(4):291-8. DOI:10.1515/hsz-2011-0228 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human N-terminal acetyltransferases (NATs) catalyze the transfer of acetyl moieties to the N-termini of 80-90% of all human proteins. Six NAT types are present in humans, NatA-NatF, each is composed of specific subunits and each acetylates a set of substrates defined by the N-terminal amino-acid sequence. NATs have been suggested to act as oncoproteins as well as tumor suppressors in human cancers, and NAT expression may be both elevated and decreased in cancer versus non-cancer tissues. Manipulation of NATs in cancer cells induced cell-cycle arrest, apoptosis or autophagy, implying that these enzymes target a variety of pathways. Of particular interest is hNaa10p (human ARD1), the catalytic subunit of the NatA complex, which was coupled to a number of signaling molecules including hypoxia inducible factor-1α, β-catenin/cyclin D1, TSC2/mammalian target of rapamycin, myosin light chain kinase , DNA methyltransferase1/E-cadherin and p21-activated kinase-interacting exchange factors (PIX)/Cdc42/Rac1. The variety of mechanistic links where hNaa10p acts as a NAT, a lysine acetyltransferase or displaying a non-catalytic role, provide insights to how hNaa10p may act as both a tumor suppressor and oncoprotein.Oncogene advance online publication, 5 March 2012; doi:10.1038/onc.2012.82.
    Oncogene 03/2012; 32(3). DOI:10.1038/onc.2012.82 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The majority of eukaryotic proteins are subjected to N-terminal acetylation (Nt-acetylation), catalysed by N-terminal acetyltransferases (NATs). Recently, the structure of an NAT-peptide complex was determined, and detailed proteome-wide Nt-acetylation patterns were revealed. Furthermore, Nt-acetylation just emerged as a multifunctional regulator, acting as a protein degradation signal, an inhibitor of endoplasmic reticulum (ER) translocation, and a mediator of protein complex formation. Nt-acetylation is regulated by acetyl-coenzyme A (Ac-CoA) levels, and thereby links metabolic cell states to cell death. The essentiality of NATs in humans is stressed by the recent discovery of a human hereditary lethal disease caused by a mutation in an NAT gene. Here, we discuss how these recent findings shed light on NATs as major protein regulators and key cellular players.
    Trends in Biochemical Sciences 03/2012; 37(4):152-61. DOI:10.1016/j.tibs.2012.02.003 · 13.52 Impact Factor
Show more