Analysis of the complete open reading frame of genotype 2b hepatitis C virus in association with the response to peginterferon and ribavirin therapy.

First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
PLoS ONE (Impact Factor: 3.53). 01/2011; 6(9):e24514. DOI: 10.1371/journal.pone.0024514
Source: PubMed

ABSTRACT Patients infected with genotype 2b hepatitis C virus (HCV) generally can achieve favorable responses to pegylated-interferon plus ribavirin therapy (PEG-IFN/RBV). However, a proportion of patients show poorer responses and the correlation between viral sequence variation and treatment outcome remains unclear.
The pretreatment complete open reading frame (ORF) sequences of genotype 2b HCV determined by direct sequencing were investigated for correlation with the final outcome in a total of 60 patients.
In this study group, 87.5% (14/16) of non-sustained virological response (non-SVR) patients (n = 16) were relapsers. Compared to sustained virological response (SVR) patients (n = 44), non-SVR patients were older and could not achieve prompt viral clearance after the therapy induction. Comparing each viral protein between the two groups, viral sequences were more diverse in SVR patients and that diversity was found primarily in the E1, p7, and NS5A proteins. In searching for specific viral regions associated with the final outcome, several regions in E2, p7, NS2, NS5A, and NS5B were extracted. Among these regions, part of the interferon sensitivity determining region (ISDR) was included. In these regions, amino acid substitutions were associated with the final outcome in an incremental manner, depending upon the number of substitutions.
Viral sequences are more diverse in SVR patients than non-SVR patients receiving PEG-IFN/RBV therapy for genotype-2b HCV infection. Through systematic comparison of viral sequences, several specific regions, including part of the ISDR, were extracted as having significant correlation with the final outcome.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell culture produced hepatitis C virus (HCV) has been subjected to up to 100 serial passages in human hepatoma cells in the absence or presence of different doses of interferon-α (IFN-α). Virus survival, genetic changes, fitness levels and phenotypic traits have been examined. While high initial IFN-α doses (increasing from 1 to 4 IU/ml) did not allow HCV survival beyond passage 40, a gradual exposure (from 0.25 to 10 IU/ml) allowed the virus to survive for at least 100 passages. The virus passaged in the presence of IFN-α acquired IFN-α resistance as evidenced by enhanced progeny production and viral protein expression in an IFN-α environment. A partial IFN-α resistance was also noted in populations passaged in the absence of IFN-α. All lineages acquired adaptative mutations, and multiple, non-synonymous mutations scattered throughout the genome were present in IFN-α-selected populations. Comparison of consensus sequences indicates a dominance of synonymous versus non-synonymous substitutions. IFN-α-resistant populations displayed decreased sensitivity to a combination of IFN-α and ribavirin. A phenotypic trait common to all assayed viral populations is the ability to increase shut-off of host cell protein synthesis, accentuated in infections with IFN-α-selected populations carried out in the presence of IFN-α. The trait was associated with enhanced phosphorylation of PKR and eIF2α, although other contributing factors are likely. The results suggest that multiple, independent mutational pathways can confer IFN-α resistance to HCV, and might explain why no unified picture has been obtained regarding IFN-α resistance in vivo.
    Journal of Virology 05/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is a major cause of hepatitis and hepatocellular carcinoma (HCC) world-wide. Most HCV patients have relatively stable disease, but approximately 25% have progressive disease that often terminates in liver failure or HCC. HCV is highly variable genetically, with seven genotypes and multiple subtypes per genotype. This variation affects HCV's sensitivity to antiviral therapy and has been implicated to contribute to differences in disease. We sequenced the complete viral coding capacity for 107 HCV genotype 1 isolates to determine whether genetic variation between independent HCV isolates is associated with the rate of disease progression or development of HCC. Consensus sequences were determined by sequencing RT-PCR products from serum or plasma. Positions of amino acid conservation, amino acid diversity patterns, selection pressures, and genome-wide patterns of amino acid covariance were assessed in context of the clinical phenotypes. A few positions were found where the amino acid distributions or degree of positive selection differed between in the HCC and cirrhotic sequences. All other assessments of viral genetic variation and HCC failed to yield significant associations. Sequences from patients with slow disease progression were under a greater degree of positive selection than sequences from rapid progressors, but all other analyses comparing HCV from rapid and slow disease progressors were statistically insignificant. The failure to observe distinct sequence differences associated with disease progression or HCC employing methods that previously revealed strong associations with the outcome of interferon α-based therapy implies that variable ability of HCV to modulate interferon responses is not a dominant cause for differential pathology among HCV patients. This lack of significant associations also implies that host and/or environmental factors are the major causes of differential disease presentation in HCV patients.
    PLoS ONE 01/2014; 9(7):e103748. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is a major cause of liver disease worldwide. HCV is able to evade host defense mechanisms, including both innate and acquired immune responses, to establish persistent infection, which results in a broad spectrum of pathogenicity, such as lipid and glucose metabolism disorders and hepatocellular carcinoma development. The HCV genome is characterized by a high degree of genetic diversity, which can be associated with viral sensitivity or resistance (reflected by different virological responses) to interferon (IFN)-based therapy. In this regard, it is of importance to note that polymorphisms in certain HCV genomic regions have shown a close correlation with treatment outcome. In particular, among the HCV proteins, the core and nonstructural proteins (NS) 5A have been extensively studied for their correlation with responses to IFN-based treatment. This review aims to cover updated information on the impact of major HCV genetic factors, including HCV genotype, mutations in amino acids 70 and 91 of the core protein and sequence heterogeneity in the IFN sensitivity-determining region and IFN/ribavirin resistance-determining region of NS5A, on virological responses to IFN-based therapy.
    World journal of gastroenterology : WJG. 06/2014; 20(24):7555-7569.

Full-text (2 Sources)

Available from
May 28, 2014