West Nile Virus Genetic Diversity is Maintained during Transmission by Culex pipiens quinquefasciatus Mosquitoes

University of Texas Medical Branch, United States of America
PLoS ONE (Impact Factor: 3.53). 09/2011; 6(9):e24466. DOI: 10.1371/journal.pone.0024466
Source: PubMed

ABSTRACT Due to error-prone replication, RNA viruses exist within hosts as a heterogeneous population of non-identical, but related viral variants. These populations may undergo bottlenecks during transmission that stochastically reduce variability leading to fitness declines. Such bottlenecks have been documented for several single-host RNA viruses, but their role in the population biology of obligate two-host viruses such as arthropod-borne viruses (arboviruses) in vivo is unclear, but of central importance in understanding arbovirus persistence and emergence. Therefore, we tracked the composition of West Nile virus (WNV; Flaviviridae, Flavivirus) populations during infection of the vector mosquito, Culex pipiens quinquefasciatus to determine whether WNV populations undergo bottlenecks during transmission by this host. Quantitative, qualitative and phylogenetic analyses of WNV sequences in mosquito midguts, hemolymph and saliva failed to document reductions in genetic diversity during mosquito infection. Further, migration analysis of individual viral variants revealed that while there was some evidence of compartmentalization, anatomical barriers do not impose genetic bottlenecks on WNV populations. Together, these data suggest that the complexity of WNV populations are not significantly diminished during the extrinsic incubation period of mosquitoes.

Download full-text


Available from: Eleanor R Deardorff, Jun 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: West Nile virus (WNV) (Flaviviridae: Flavivirus) is transmitted from mosquitoes to birds, but can cause fatal encephalitis in infected humans. Since its introduction into North America in New York in 1999, it has spread throughout the western hemisphere. Multiple outbreaks have also occurred in Europe over the last 20 years. This review highlights recent efforts to understand how host pressures impact viral population genetics, genotypic and phenotypic changes which have occurred in the WNV genome as it adapts to this novel environment, and molecular epidemiology of WNV worldwide. Future research directions are also discussed.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 03/2012; 12(2):181-90. DOI:10.1016/j.meegid.2011.11.014 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most RNA viruses exist in their hosts as a heterogeneous population of related variants. Due to error prone replication, mutants are constantly generated which may differ in individual fitness from the population as a whole. Here we characterize three WNV isolates that contain, along with full-length genomes, mutants with large internal deletions to structural and nonstructural protein-coding regions. The isolates were all obtained from lorikeets that died from WNV at the Rio Grande Zoo in Albuquerque, NM between 2005 and 2007. The deletions are approximately 2kb, in frame, and result in the elimination of the complete envelope, and portions of the prM and NS-1 proteins. In Vero cell culture, these internally deleted WNV genomes function as defective interfering particles, reducing the production of full-length virus when introduced at high multiplicities of infection. In mosquitoes, the shortened WNV genomes reduced infection and dissemination rates, and virus titers overall, and were not detected in legs or salivary secretions at 14 or 21 days post-infection. In mice, inoculation with internally deleted genomes did not attenuate pathogenesis relative to full-length or infectious clone derived virus, and shortened genomes were not detected in mice at the time of death. These observations provide evidence that large deletions may occur within flavivirus populations more frequently than has generally been appreciated and suggest that they impact population phenotype minimally. Additionally, our findings suggest that highly similar mutants may frequently occur in particular vertebrate hosts.
    Virology 02/2012; 427(1):10-7. DOI:10.1016/j.virol.2012.01.028 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector's antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.
    Viruses 02/2015; 7(2):820-843. DOI:10.3390/v7020820 · 3.28 Impact Factor