Article

Nanoscale heat flux between nanoporous materials.

Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris-Sud, Campus Polytechnique, RD 128, Palaiseau Cedex, France.
Optics Express (Impact Factor: 3.53). 09/2011; 19 Suppl 5:A1088-103. DOI: 10.1364/OE.19.0A1088
Source: PubMed

ABSTRACT By combining stochastic electrodynamics and the Maxwell-Garnett description for effective media we study the radiative heat transfer between two nanoporous materials. We show that the heat flux can be significantly enhanced by air inclusions, which we explain by: (a) the presence of additional surface waves that give rise to supplementary channels for heat transfer throughout the gap, (b) an increase in the contribution given by the ordinary surface waves at resonance, (c) and the appearance of frustrated modes over a broad spectral range. We generalize the known expression for the nanoscale heat flux for anisotropic metamaterials.

0 Bookmarks
 · 
139 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate near-field radiative heat transfer between two thin films made of metamaterials. The impact of film thickness on magnetic and electric surface polaritons (ESPs) is analyzed. It is found that the strength as well as the location of magnetic resonance does not change with film thickness until the film behaves as semi-infinite for the dielectric function chosen in this study. When the film is thinner than vacuum gap, both electric and magnetic polaritons contribute evenly to near-field radiative heat transfer. At larger film thicknesses, ESPs dominate heat transfer due to excitation of a larger number of modes. Results obtained from this study will facilitate applications of metamaterials as thin-film coatings for energy systems.
    Optics Letters 03/2014; 39(5):1266-9. · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.
    Journal of Applied Physics 06/2014; 115(23):234306-234306-12. · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we demonstrate a vacuum thermal switch based on near-field thermal radiation between phase transition materials, i.e., vanadium dioxide (VO2), whose phase changes from insulator to metal at 341 K. Similar modulation effect has already been demonstrated and it will be extended to thin-film structure with substrate in this paper. Strong coupling of surface phonon polaritons between two insulating VO2 plates significantly enhances the near-field heat flux, which on the other hand is greatly reduced when the VO2 emitter becomes metallic, resulting strong thermal switching effect. Fluctuational electrodynamics predicts more than 80% heat transfer reduction at sub-30-nm vacuum gaps and 50% at vacuum gap of 1 micron. By replacing the bulk VO2 receiver with a thin film of several tens of nanometers, the switching effect can be further improved over a broad range of vacuum gaps from 10 nm to 1 um. In addition, for the purpose of more practical setup in experiments and applications, the SiO2 substrate effect is also considered for the structure with thin-film emitter or receiver.
    Journal of Quantitative Spectroscopy and Radiative Transfer 10/2014; · 2.29 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
Jun 3, 2014