Article

Comparative effects of Guanfu base A and Guanfu base G on HERG K+ channel.

Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Journal of cardiovascular pharmacology (Impact Factor: 2.83). 09/2011; 59(1):77-83. DOI: 10.1097/FJC.0b013e318236e380
Source: PubMed

ABSTRACT Guanfu base A (GFA) and Guanfu base G (GFG) are chemicals isolated from Aconitum coreanum. The potassium channel encoded by the human ether-a-go-go related gene (HERG) plays an important role in repolarization of the cardiac action potential. The purpose of the present study was to investigate the effects of GFA and GFG on the HERG channel and its structure-function relationship.
The effects of GFA and GFG were investigated in human embryonic kidney 293 (HEK293) cells transiently transfected with HERG complementary DNA using a whole-cell patch clamp technique.
GFA and GFG inhibited HERG channel current in concentration-, voltage-, and time-dependent manners. The IC50 for GFA and GFG was 1.64 mM and 17.9 μM, respectively. Both GFA and GFG shifted the activation curve in a negative direction and accelerated channel inactivation but showed no effect on the inactivation curve. Moreover, GFG also accelerated channel recovery from inactivation.
Both GFA and GFG blocked HERG channel current. This effect was stronger after GFG treatment rather than GFA treatment. This blockade was dependent on open and inactivated channel states. These results indicate that GFA could be a rather promising antiarrhythmic drug without severe side effects, whereas GFG could cause QT prolongation and requires further research.

0 Bookmarks
 · 
156 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human ether-a-go-go-related gene (hERG) encodes a channel that conducts the rapidly activating delayed rectifier K(+) current (I(Kr)), which is important for cardiac repolarization. Mutations in hERG reduce I(Kr) and cause congenital long QT syndrome (LQTS). More frequently, common medications can reduce I(Kr) and cause LQTS as a side effect. Protein trafficking abnormalities are responsible for most hERG mutation-related LQTS and are recently recognized as a mechanism for drug-induced LQTS. Whereas hERG trafficking has been studied in recombinant expression systems, there has been no reported study on cardiac I(Kr) trafficking at the protein level. In the present study, we identified that I(Kr) is present in cultured neonatal rat ventricular myocytes and can be robustly recorded using Cs(+) as the charge carrier. We further discovered that 4,4'-(isopropylidenedithio)-bis-(2,6-di-t-butylphenol) (probucol), a cholesterol-lowering drug that induces LQTS, disrupted I(Kr) trafficking and prolonged the cardiac action potential duration. Probucol did not directly block I(Kr). Probucol also disrupted hERG trafficking and did not block hERG channels expressed in human embryonic kidney 293 cells. We conclude that probucol induces LQTS by disrupting ether-a-go-go-related gene trafficking, and that primary culture of neonatal rat cardiomyocytes represents a useful system for studying native I(Kr) trafficking.
    Journal of Pharmacology and Experimental Therapeutics 07/2007; 321(3):911-20. · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesoridazine, a phenothiazine antipsychotic agent, prolongs the QT interval of the cardiac electrocardiogram and is associated with Torsade de pointes-type arrhythmias. In this study, we examined the effects of mesoridazine on human ether-a-go-go-related gene (HERG) K+ currents. HERG channels were stably expressed in human embryonic kidney 293 cells and studied using standard whole-cell patch-clamp technique (37 degrees C). Mesoridazine blocked HERG currents in a concentration-dependent manner (IC50 550 nM at 0 mV); block increased significantly over the voltage range where HERG activates and saturated at voltages eliciting maximal HERG channel activation. Tonic block of HERG current by mesoridazine (1.8 microM) was minimal (< 2-4%). The rate of the onset of HERG channel block was rapid and dose dependent (tau = 54 +/- 7 ms at 0 mV and 1.8 microM mesoridazine), but not significantly affected by test potentials ranging from -30 to +30 mV. The V1/2 for steady-state activation was shifted from -31.2 +/- 1.0 to -39.2 +/- 0.5 mV (P < 0.01). The apparent rate of HERG channel deactivation was significantly reduced (fast tau = 153 +/- 8 vs. 102 +/- 6 ms at -50 mV, P < 0.01; slow tau = 1113 +/- 63 vs. 508 +/- 27 ms, P < 0.01). The inactivation kinetics and voltage dependence of steady-state inactivation of the HERG channel were not significantly altered by mesoridazine. These findings demonstrate that mesoridazine is a potent and rapid open-channel blocker of HERG channels. This block would explain the QT prolongation seen clinically at therapeutic concentrations (0.3-3.6 microM).
    Journal of Molecular and Cellular Cardiology 01/2004; 36(1):151-60. · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flunarizine has been widely used for the management of a variety of disorders such as peripheral vascular diseases, migraine, and epilepsy. The majority of its beneficial effects have been attributed to its ability to inhibit voltage-gated Ca2+ channels in the low micromolar range, albeit non-selectively, as flunarizine has been shown to inhibit a variety of ion channels. We examined the effects of flunarizine on potassium currents through cardiac channels encoded by the human ether-a-go-go related gene (hERG) stably expressed in CHO cells. In this study, we have characterized the effect of flunarizine on biophysical properties of hERG potassium currents with standard whole-cell voltage-clamp techniques. Notably, flunarizine is a highly potent inhibitor of hERG current with an IC50 value of 5.7 nM. The effect of flunarizine on hERG potassium current is concentration and time dependent, and displays voltage dependence over the voltage range between -40 and 0 mV. At concentrations near or above the IC50, flunarizine causes a negative shift in the voltage dependence of hERG current activation and accelerates tail current deactivation. Flunarizine preferentially blocks the activated state of the channel and displays weak frequency dependence of inhibition. Flunarizine also inhibits KCNQ1/KCNE1 channel current with an IC50 of 0.76 microM.
    Journal of Cardiovascular Pharmacology 03/2006; 47(2):211-20. · 2.38 Impact Factor