Expression and significance of P53 protein and MDM-2 protein in human gliomas

Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
Chinese medical journal (Impact Factor: 1.05). 08/2011; 124(16):2530-3. DOI: 10.3760/cma.j.issn.0366-6999.2011.16.024
Source: PubMed


P53 is one of the most studied tumor suppressors in the cancer research, and over 50% of human tumors carry P53 mutations. MDM-2 is amplified and/or overexpressed in a variety of human tumors of diverse tissue origin. The aim of this study was to examine the expression of P53 protein and MDM-2 protein in gliomas, and to investigate the relationship between the expression of the two proteins and the histopathological grades of glioma. The relationship between MDM-2 protein expression and P53 protein expression was also analyzed.
The expression of P53 protein and MDM-2 protein was immunohistochemically detected using monoclonal antibodies in 242 paraffin embedded tissues, including 30 normal brain tissues from patients with craniocerebral injury and 212 tissues from patients with primary glioma (grade I - II group: 5 cases of grade I, 119 cases of grade II; and grade III--IV group: 53 cases of grade III, and 35 cases of grade IV).
The P53 positive rate was significantly higher in the glioma groups than in the control group (P < 0.0001). The P53 positive rate was significantly higher in glioma tissues of grade III - IV than in glioma tissues of grade I - II group (P = 0.001). The MDM-2 positive rate was significantly higher in glioma groups than in the control group (P < 0.0001). There was no significant difference in the MDM-2 positive rate between the two glioma groups (P = 0.936). The expression of P53 protein was not related to expression of MDM-2 protein (P = 0.069)
Overexpression of P53 protein might be related to the occurrence and progression of glioma. Overexpression of MDM-2 protein may play an important role in glioma tumorigenesis, but may not be involved in glioma progression. The overexpression of MDM-2 protein was an early event in malignant transformation of glioma. MDM-2 may be a key player in glioma in its own right.

9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2010, four subtypes (classical, proneural, mesenchymal, and neural) of glioblastoma multiforme (GBM) were defined by molecular genetic analyses. The objective of this study was to assess whether gliomas, independently of the type and grade, could be subdivided into protein-based subtypes. A tissue microarray (TMA) approach was applied to incorporate tissue samples of low-grade and high-grade gliomas into five TMAs. High expression levels of epidermal growth factor receptor (EGFR), CD44, c-MER proto-oncogene tyrosine kinase (MERTK), platelet-derived growth factor receptor α, p53, oligodendrocyte transcription factor 2 (OLIG2) and isocitrate dehydrogenase 1 with the R132H mutation were assessed using immunohistochemistry (IHC). Glioma could be subdivided into four subtypes by IHC. The majority of the low-grade gliomas were of the proneural subtype, i.e. high p53 expression (63% of grade II). The classical subtype, with high EGFR and low p53 expression, was most common in GBMs (39%), followed by the proneural (29%) and mesenchymal (with high CD44 and MERTK expression) (29%) subtypes, a frequency that is in line with previously published data based on molecular genetics. Assessment of the expression of the five proteins EGFR, CD44, MERTK, p53 and OLIG2 is sufficient for subtyping gliomas, and can be recommended for implementation in clinical practice for both low-grade and high-grade gliomas.
    Histopathology 02/2014; 64(3):365-79. DOI:10.1111/his.12252 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low-grade gliomas (GII) inescapably progress to high-grade gliomas (GIII). The duration of this transition is highly variable between patients and reliable predictive markers do not exist. We noticed in a subset of cases of GII, obtained by awake neurosurgery, the presence of microfoci with high cellular density, high vascular density, or minimal endothelial proliferation, which we called GII+. Our aim was to investigate whether these foci display immunohistochemical and molecular characteristics similar to GIII and whether their presence is correlated to poor prognosis. We analyzed cell proliferation, hypoxia, vascularization, and alterations of tumorigenic pathways by immunohistochemistry (Ki-67, CD31, HIF-1-alpha, EGFR, P-AKT, P53, MDM2) and fluorescence in situ hybridization (EGFR, MDM2, PDGFRA) in the hypercellular foci of 16 GII+ cases. We compared overall survival between GII, GII+, and GIII. Ki-67, and CD31 expression was higher in the foci than in the tumor background in all cases. Aberrant expression of protein markers and genomic aberrations were also observed in some foci, distinct from the tumor background. Survival was shorter in GII+ than in GII cases. Our results suggest that these foci are the early histological hallmark of anaplastic transformation, which is supported by molecular aberrations. Our study is the first to demonstrate intratumoral morphological, immunohistochemical, and molecular heterogeneity in resection specimens of GII, the presence of which is correlated to shorter survival. Our findings question the discriminative capacity of the current glioma classification and provide arguments in favor of the creation of a grade intermediate between GII and GIII, to optimize the treatment strategy of GII.
    Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 04/2015; 466(4):433-444. DOI:10.1007/s00428-014-1712-5 · 2.65 Impact Factor


9 Reads
Available from