Cognitive and behavioral consequences of impaired immunoregulation in aging.

Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
Journal of Neuroimmune Pharmacology (Impact Factor: 3.8). 09/2011; 7(1):7-23. DOI: 10.1007/s11481-011-9313-4
Source: PubMed

ABSTRACT A hallmark of the aged immune system is impaired immunoregulation of the innate and adaptive immune system in the periphery and also in the central nervous system (CNS). Impaired immunoregulation may predispose older individuals to an increased frequency of peripheral infections with concomitant cognitive and behavioral complications. Thus, normal aging is hypothesized to alter the highly coordinated interactions between the immune system and the brain. In support of this notion, mounting evidence in rodent models indicate that the increased inflammatory status of the brain is associated with increased reactivity of microglia, the innate immune cells of the CNS. Understanding how immunity is affected with age is important because CNS immune cells play an integral role in propagating inflammatory signals that are initiated in the periphery. Increased reactivity of microglia sets the stage for an exaggerated inflammatory cytokine response following activation of the peripheral innate immune system that is paralleled by prolonged sickness, depressive-like complications and cognitive impairment. Moreover, amplified neuroinflammation negatively affects several aspects of neural plasticity (e.g., neurogenesis, long-term potentiation, and dendritic morphology) that can contribute to the severity of neurological complications. The purpose of this review is to discuss several key peripheral and central immune changes that impair the coordinated response between the immune system and the brain and result in behavioral and cognitive deficits.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TNF-α plays important functional roles in the central nervous system during normal physiological circumstances via intricate signaling mechanisms between its receptors, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Although the roles of TNFR1 and TNFR2 in the diseased brain have received considerable attention, their functions on behavior and cognition in a non-inflammatory physiological aged environment are still unknown. In the present study we investigated the functional roles of TNFR1 and TNFR2 in learning and memory, motor performance and anxiety-like behavior via several behavioral and cognitive assessments in young and aged mice, deficient of either TNFR1 or TNFR2. Results from this study show that deletion of TNFR2 impairs novel object recognition, spatial memory recognition, contextual fear conditioning, motor performance and can increase anxiety-like behavior in young adult mice. Concerning the functions of TNFR1 and TNFR2 functioning in an aged environment, age caused memory impairment in spatial memory recognition independent of genotype. However, both young and aged mice deficient of TNFR2 performed poorly in the contextual fear conditioning test. These mice displayed decreased anxiety-like behavior, whereas mice deficient of TNFR1 were insusceptible to the effect of aging on anxiety-like behavior. This study provides novel knowledge on TNFR1 and TNFR2 functioning in behavior and cognition in young and aged mice in a non-inflammatory physiological environment.
    Behavioural brain research 10/2013; · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments.
    Progress in Neurobiology 07/2012; 99(2):93-105. · 9.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surgery and anaesthesia exert comparatively greater adverse effects on the elderly than on the younger brain, manifest by the higher prevalence of postoperative delirium and cognitive dysfunction. Postoperative delirium and cognitive dysfunction delay rehabilitation, and are associated with increases in morbidity and mortality among elderly surgical patients. We review the aetiology of postoperative delirium and cognitive dysfunction in the elderly with a particular focus on anaesthesia and sedation, discuss methods of diagnosing and monitoring postoperative cognitive decline, and describe the treatment strategies by which such decline may be prevented.
    Anaesthesia 01/2014; 69(s1). · 3.49 Impact Factor