Cognitive and behavioral consequences of impaired immunoregulation in aging.

Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
Journal of Neuroimmune Pharmacology (Impact Factor: 3.8). 09/2011; 7(1):7-23. DOI: 10.1007/s11481-011-9313-4
Source: PubMed

ABSTRACT A hallmark of the aged immune system is impaired immunoregulation of the innate and adaptive immune system in the periphery and also in the central nervous system (CNS). Impaired immunoregulation may predispose older individuals to an increased frequency of peripheral infections with concomitant cognitive and behavioral complications. Thus, normal aging is hypothesized to alter the highly coordinated interactions between the immune system and the brain. In support of this notion, mounting evidence in rodent models indicate that the increased inflammatory status of the brain is associated with increased reactivity of microglia, the innate immune cells of the CNS. Understanding how immunity is affected with age is important because CNS immune cells play an integral role in propagating inflammatory signals that are initiated in the periphery. Increased reactivity of microglia sets the stage for an exaggerated inflammatory cytokine response following activation of the peripheral innate immune system that is paralleled by prolonged sickness, depressive-like complications and cognitive impairment. Moreover, amplified neuroinflammation negatively affects several aspects of neural plasticity (e.g., neurogenesis, long-term potentiation, and dendritic morphology) that can contribute to the severity of neurological complications. The purpose of this review is to discuss several key peripheral and central immune changes that impair the coordinated response between the immune system and the brain and result in behavioral and cognitive deficits.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Microglia integrate within the neural tissue with a distinct ramified morphology through which they scan the surrounding neuronal network. Here, we used a digital tool for the quantitative morphometric characterization of fine cortical microglial structures in mice, and the changes they undergo with aging and in Alzheimer's-like disease. We show that, compared with microglia in young mice, microglia in old mice are less ramified and possess fewer branches and fine processes along with a slightly increased proinflammatory cytokine expression. A similar microglial pathology appeared 6–12 months earlier in mouse models of Alzheimer's disease (AD), along with a significant increase in brain parenchyma lacking coverage by microglial processes. We further demonstrate that microglia near amyloid plaques acquire unique activated phenotypes with impaired process complexity. We thus show that along with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced cognitive decline.
    Aging cell 03/2014; · 7.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated conditions and enhances activation of neurobiological mechanisms underlying depression after immune stimulation. They suggest therefore that obesity, and possibly obesity-associated inflammatory priming, may represent a vulnerability state to immune-mediated depressive symptoms.
    Brain Behavior and Immunity 01/2014; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The purpose of this study was to characterize hepatitis C virus (HCV)-associated differences in the expression of 47 inflammatory factors and to evaluate the potential role of peripheral immune activation in HCV-associated neuropsychiatric symptoms-depression, anxiety, fatigue, and pain. An additional objective was to evaluate the role of immune factor dysregulation in the expression of specific neuropsychiatric symptoms to identify biomarkers that may be relevant to the treatment of these neuropsychiatric symptoms in adults with or without HCV. Methods Blood samples and neuropsychiatric symptom severity scales were collected from HCV-infected adults (HCV+, n = 39) and demographically similar noninfected controls (HCV-, n = 40). Multi-analyte profile analysis was used to evaluate plasma biomarkers. ResultsCompared with HCV- controls, HCV+ adults reported significantly (P < 0.050) greater depression, anxiety, fatigue, and pain, and they were more likely to present with an increased inflammatory profile as indicated by significantly higher plasma levels of 40% (19/47) of the factors assessed (21%, after correcting for multiple comparisons). Within the HCV+ group, but not within the HCV- group, an increased inflammatory profile (indicated by the number of immune factors > the LDC) significantly correlated with depression, anxiety, and pain. Within the total sample, neuropsychiatric symptom severity was significantly predicted by protein signatures consisting of 4-10 plasma immune factors; protein signatures significantly accounted for 19-40% of the variance in depression, anxiety, fatigue, and pain. Conclusions Overall, the results demonstrate that altered expression of a network of plasma immune factors contributes to neuropsychiatric symptom severity. These findings offer new biomarkers to potentially facilitate pharmacotherapeutic development and to increase our understanding of the molecular pathways associated with neuropsychiatric symptoms in adults with or without HCV.
    Brain and behavior. 03/2014; 4(2):123-42.