Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse.

University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America.
PLoS Biology (Impact Factor: 11.77). 09/2011; 9(9):e1001151. DOI: 10.1371/journal.pbio.1001151
Source: PubMed

ABSTRACT Accumulation of filamentous actin (F-actin) at the immunological synapse (IS) is a prerequisite for the cytotoxic function of natural killer (NK) cells. Subsequent to reorganization of the actin network, lytic granules polarize to the IS where their contents are secreted directly toward a target cell, providing critical access to host defense. There has been limited investigation into the relationship between the actin network and degranulation. Thus, we have evaluated the actin network and secretion using microscopy techniques that provide unprecedented resolution and/or functional insight. We show that the actin network extends throughout the IS and that degranulation occurs in areas where there is actin, albeit in sub-micron relatively hypodense regions. Therefore we propose that granules reach the plasma membrane in clearances in the network that are appropriately sized to minimally accommodate a granule and allow it to interact with the filaments. Our data support a model whereby lytic granules and the actin network are intimately associated during the secretion process and broadly suggest a mechanism for the secretion of large organelles in the context of a cortical actin barrier.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chediak-Higashi syndrome (CHS) is caused by mutations in the gene encoding LYST protein, the function of which remains poorly understood. Prominent features of CHS include defective secretory lysosome exocytosis and the presence of enlarged, lysosome-like organelles in several cell types. In order to get further insight into the role of LYST in the biogenesis and exocytosis of cytotoxic granules, we analyzed cytotoxic T lymphocytes (CTLs) from patients with CHS. Using confocal microscopy and correlative light electron microscopy, we showed that the enlarged organelle in CTLs is a hybrid compartment that contains proteins components from recycling-late endosomes and lysosomes. Enlargement of cytotoxic granules results from the progressive clustering and then fusion of normal-sized endo-lysosomal organelles. At the immunological synapse (IS) in CHS CTLs, cytotoxic granules have limited motility and appear docked while nevertheless unable to degranulate. By increasing the expression of effectors of lytic granule exocytosis, such as Munc13-4, Rab27a and Slp3, in CHS CTLs, we were able to restore the dynamics and the secretory ability of cytotoxic granules at the IS. Our results indicate that LYST is involved in the trafficking of the effectors involved in exocytosis required for the terminal maturation of perforin-containing vesicles into secretory cytotoxic granules. This article is protected by copyright. All rights reserved.
    Traffic (Copenhagen, Denmark). 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer cells assess target cell health via interactions at the immune synapse (IS) that facilitates signal integration and directed secretion. Here we test whether the IS also functions as a gasket. Quantitative fluorescence microscopy of nanometer-scale dextrans within synapses formed by various effector-target cell conjugates reveal that molecules are excluded in a size-dependent manner at activating synapses. Dextran sized ≤4 nm move in and out of the IS, but access is significantly reduced (by >50%) for dextran sized 10-13 nm, and dextran ≥32 nm is almost entirely excluded. Depolymerization of F-actin abrogated exclusion. Unexpectedly, larger-sized dextrans are cleared as the IS assembles in a zipper-like manner. Monoclonal antibodies are also excluded from the IS but smaller single-domain antibodies are able to penetrate. Therefore, the IS can clear and exclude molecules above a size threshold, and drugs designed to target synaptic cytokines or cytotoxic proteins must fit these dimensions.
    Nature Communications 11/2014; 5:5479. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.
    eLife. 01/2014; 3.

Preview (2 Sources)

Available from