TCR-dependent transformation of mature memory phenotype T cells in mice.

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
The Journal of clinical investigation (Impact Factor: 15.39). 09/2011; 121(10):3834-45. DOI: 10.1172/JCI37210
Source: PubMed

ABSTRACT A fundamental goal in cancer research is the identification of the cell types and signaling pathways capable of initiating and sustaining tumor growth, as this has the potential to reveal therapeutic targets. Stem and progenitor cells have been implicated in the genesis of select lymphoid malignancies. However, the identity of the cells in which mature lymphoid neoplasms are initiated remains unclear. Here, we investigate the origin of peripheral T cell lymphomas using mice in which Snf5, a chromatin remodelling-complex subunit with tumor suppressor activity, could be conditionally inactivated in developing T cells. In this model of mature peripheral T cell lymphomas, the cell of origin was a mature CD44hiCD122loCD8⁺ T cell that resembled a subset of memory cells that has capacity for self-renewal and robust expansion, features shared with stem cells. Further analysis showed that Snf5 loss led to activation of a Myc-driven signaling network and stem cell transcriptional program. Finally, lymphomagenesis and lymphoma proliferation depended upon TCR signaling, establishing what we believe to be a new paradigm for lymphoid malignancy growth. These findings suggest that the self-renewal and robust proliferative capacities of memory T cells are associated with vulnerability to oncogenic transformation. Our findings further suggest that agents that impinge upon TCR signaling may represent an effective therapeutic modality for this class of lethal human cancers.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells or tumour-propagating cells (TPCs) have been identified for a number of cancers, but data pertaining to their existence in lymphoma so far remain elusive. We show for the first time that a small subset of cells purified from human anaplastic lymphoma kinase (ALK)-positive and -negative, anaplastic large cell lymphoma cell lines and primary patient tumours using the side population (SP) technique have serial tumour-propagating capacity both in vitro and in vivo; they give rise to both themselves and the bulk tumour population as well as supporting growth of the latter through the production of soluble factors. In vivo serial dilution assays utilising a variety of model systems inclusive of human cell lines, primary human tumours and nucleophosmin (NPM)-ALK-induced murine tumours demonstrate the TPC frequency to vary from as many as 1/54 to 1/1336 tumour cells. In addition, the SP cells express higher levels of pluripotency-associated transcription factors and are enriched for a gene expression profile consistent with early thymic progenitors. Finally, our data show that the SP cells express higher levels of the NPM-ALK oncogene and are sensitive to an ALK inhibitor.Oncogene advance online publication 12 May 2014; doi:10.1038/onc.2014.112.
    Oncogene 05/2014; · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major function of innate immune receptors is to recognize pathogen-associated molecular patterns and then evoke immune responses appropriate to the nature of the invading pathogen(s). Because innate immune cells express various types of these receptors, distinct combinations of signaling pathways are activated in response to a given pathogen. Although the conventional wisdom is that these signaling pathways cooperate with one another to ensure an effective host response, a more nuanced view recognizes antagonism between the individual pathways, where the attenuation of a signaling pathway(s) by others may shape the immune response. In this study, we show that, on Listeria monocytogenes infection, Toll-like receptor-triggered MyD88 signaling pathways suppress type I IFN gene induction, which is detrimental to macrophage bactericidal activity. These pathways target and suppress the IFN regulatory factor 3 (IRF3) transcription factor that is activated by the stimulator of IFN genes-TANK-binding kinase-1 kinase pathway. We also provide evidence for the involvement of the MAPK phosphatase family members, which renders IRF3 hypophosphorylated on Toll-like receptor signaling by enhancing the formation of an MAPK phosphatase-IRF3-TANK-binding kinase-1 ternary complex. This study, therefore, reveals a hitherto unrecognized and important contribution of a beneficial innate signaling interference against bacterial infections.
    Proceedings of the National Academy of Sciences 11/2013; · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Collectively, genes encoding subunits of the SWI/SNF (BAF) chromatin remodeling complex are mutated in 20% of all human cancers, with the SMARCA4 (BRG1) subunit being one of the most frequently mutated. The SWI/SNF complex modulates chromatin remodeling through the activity of two mutually exclusive catalytic subunits, SMARCA4 and SMARCA2 (BRM). Here, we show that a SMARCA2-containing residual SWI/SNF complex underlies the oncogenic activity of SMARCA4-mutant cancers. We demonstrate that a residual SWI/SNF complex exists in SMARCA4-mutant cell lines and serves essential roles in cellular proliferation. Further, using data from loss-of-function screening of 165 cancer cell lines, we identify SMARCA2 as an essential gene in SMARCA4-mutant cancer cell lines. Mechanistically, we reveal that Smarca4 inactivation leads to greater incorporation of the non-essential SMARCA2 subunit into the SWI/SNF complex. Collectively, these results reveal a role for SMARCA2 in oncogenesis caused by SMARCA4 loss and identify the ATPase and bromodomain-containing SMARCA2 as a potential therapeutic target in these cancers.
    Molecular and cellular biology 01/2014; · 6.06 Impact Factor


Available from